
29th March 2019

Open Source Hardware Verification
A survey and suggestions for future work

Ben Marshall

University of Bristol Computer Science Department

Open Source Hardware Verification

29th March 2019

Outline

Introduction & Motivation

A very brief history of commercial EDA & Verification

Where open source verification is now

Current challenges for open source verification

Opportunities for contribution

Questions & Discussion

Outline

Introduction & Motivation

A very brief history of commercial EDA & Verification

Where open source verification is now

Current challenges for open source verification

Opportunities for contribution

Questions & Discussion

20
19

-0
3-

07

Open Source Hardware Verification

Outline

So, the aim of this talk is to give an overview of functional verification in the context of open
source hardware design.
I’ll start with what motivated me to look into this, which will hopefully give context to some
later assertions I’d like to make.
There’s an extremely brief history of EDA development (which is hopefully fairly familiar to
everyone!), and a comparison between the OSDA community and the commercial alterna-
tives.
This’ll include an overview of what we can do with current OS tools (as opposed to what is
currently done), and where there are opportunities for future contributions.

I’ll try and finish a bit sooner, since this talk is very much a starting point for discussion

rather than an end in itself.

Open Source Hardware Verification

29th March 2019

Introduction & Motivation

Who am I?
Background in commercial CPU design and verification.

Currently working in academia on a cryptographic instruction set extension
for RISC-V.
I XCrypto: https://github.com/scarv/xcrypto

Motivations for this talk:
We spent lots of time looking for existing designs we could build on.

It became very hard to find out how (if at all) a project or component had
been verified.

We really wanted to invest in and contribute too open source hardware
designs, but didn’t know which ones to trust.

Introduction & Motivation

Who am I?
Background in commercial CPU design and verification.

Currently working in academia on a cryptographic instruction set extension
for RISC-V.
I XCrypto: https://github.com/scarv/xcrypto

Motivations for this talk:
We spent lots of time looking for existing designs we could build on.

It became very hard to find out how (if at all) a project or component had
been verified.

We really wanted to invest in and contribute too open source hardware
designs, but didn’t know which ones to trust.

20
19

-0
3-

07

Open Source Hardware Verification

Introduction & Motivation

My background is not academia, I originally did CPU design and verification in industry.
There I learnt about the dire state of some commercial EDA tools, and how to verify a CPU
three ways: directed testing, constrained random/UVM and end-to-end formal; all using
commercial tools. So it’s this background which influences how I come to the open source
community.
Now though, I’m working on an extension to RISC-V. It’s a general purpose cryptography
accelerator, designed to be a little more flexible than adding an ”AES instruction” and not
using the vector extension as a base. Please do come talk to me about it afterwards!

At the start of this project, we wanted to use existing RISC-V cores and SoC infrastructure

as a starting point for the hardware prototype. Almost a year later, we are still really strug-

gling to find designs we trust and that ”just work”. We’ve found a core, but were struck by

how hard it was to evaluate different designs. The projects we surveyed had no quantitative

evidence of verification effort, and it’s this theme which I’ll come back to later.



Open Source Hardware Verification

29th March 2019

A Brief History of Commercial EDA

Fundamentally, EDA tooling
development is driven by the need /
ability to realise larger and more
complex designs.

Developments in verification
techniques are driven by the need
to manage the growing complexity
of designs. Process Node

Shrinks

Design
Complexity

Increases

More Capable
Tools Developed

Design
Complexity

Managed

A Brief History of Commercial EDA

Fundamentally, EDA tooling
development is driven by the need /
ability to realise larger and more
complex designs.

Developments in verification
techniques are driven by the need
to manage the growing complexity
of designs. Process Node

Shrinks

Design
Complexity

Increases

More Capable
Tools Developed

Design
Complexity

Managed

20
19

-0
3-

07

Open Source Hardware Verification

A Brief History of Commercial EDA

First though, I want to talk about the motivations behind commercial EDA tools. For our
purposes, you can simplify it to a four step cycle: a smaller process node (or bigger FPGA)
enables bigger designs, the design complexity increases, tools must be updated to cope,
which makes designs more manageable in time for process nodes to shrink again. This, I
think, is the painfully simplified history of EDA.

Now, enter open source EDA...

Open Source Hardware Verification

29th March 2019

Where Open Source EDA Fits In

Design Description
Verilog / VHDL / Chisel / MyHDL / SpinalHDL / Clash / PyGears

Simulation
Icarus / GHDL / nvc / Verilator / Treadle

Synthesis
Yosys / ABC

FPGA Toolchains
Project IceStorm / Project X-Ray

Place & Route
NextPNR / Qflow / Verilog2Routing / Arachne-pnr

See: https://github.com/drom/awesome-hdl for more.

Where Open Source EDA Fits In

Design Description
Verilog / VHDL / Chisel / MyHDL / SpinalHDL / Clash / PyGears

Simulation
Icarus / GHDL / nvc / Verilator / Treadle

Synthesis
Yosys / ABC

FPGA Toolchains
Project IceStorm / Project X-Ray

Place & Route
NextPNR / Qflow / Verilog2Routing / Arachne-pnr

See: https://github.com/drom/awesome-hdl for more.

20
19

-0
3-

07

Open Source Hardware Verification

Where Open Source EDA Fits In

There’s a lot going on! At pretty much every stage of the design process, there’s an open
source tool or framework we can use. One can argue about things like technology libraries
for ASICs, but broadly, OSDA is providing some very compelling tools at all stages of the
design process.
And, it’s able to be a lot more innovative than it’s commercial cousins. I think this is best
demonstrated by the lengths people will goto to avoid writing Verilog or VHDL. ”I don’t care
if I have to build 1000’s of lines of framework and compile it to Verilog anyway, I don’t want
to write in Verilog!”

As an aside, I think these sorts of MetaHDL are really cool, but theres some things being

missed which I’ll come back to later.

Open Source Hardware Verification

29th March 2019

Where Open Source EDA Fits In

Open Source Design tools for
hardware are fantastic and getting
better all the time.

We are at the point where it’s worth
using open source tools to build
bigger, more complex designs.

Open Source designs are being
physically manufactured

More and more designs are
appearing on OpenCores / GitHub

Process Node
Shrinks

Design
Complexity

Increases

More Capable
Tools Developed

Design
Complexity

Managed

Where Open Source EDA Fits In

Open Source Design tools for
hardware are fantastic and getting
better all the time.

We are at the point where it’s worth
using open source tools to build
bigger, more complex designs.

Open Source designs are being
physically manufactured

More and more designs are
appearing on OpenCores / GitHub

Process Node
Shrinks

Design
Complexity

Increases

More Capable
Tools Developed

Design
Complexity

Managed

20
19

-0
3-

07

Open Source Hardware Verification

Where Open Source EDA Fits In

So here we are: OSDA is great, always getting better and a compelling choice for ever
larger projects.
It’s a joy to see so many new designs popping up on Github / GitLab / OpenCores or
LibreCores, and to see so many new people getting involved because these tools don’t
cost the same as a family car.
But...

We are now at the point where the complexity of many open designs means they need

substantial verification effort in order to be safe to re-use.



Open Source Hardware Verification

29th March 2019

Argument: Verification is being neglected

Three Points:

1. Functional verification is a second class citizen in open source hardware.

2. Quantitative evidence of verification effort for open source hardware designs
is hard to find and demonstrate.

3. We have almost everything we need to do a good job verifying open source
hardware with open source tools.

Argument: Verification is being neglected

Three Points:

1. Functional verification is a second class citizen in open source hardware.

2. Quantitative evidence of verification effort for open source hardware designs
is hard to find and demonstrate.

3. We have almost everything we need to do a good job verifying open source
hardware with open source tools.

20
19

-0
3-

07

Open Source Hardware Verification

Argument: Verification is being neglected

This is the argument I want to make: I think that so far, functional verification has been
somewhat neglected: both in terms of tool capability and actual engineering practice, and
that we’re now at an inflection point in OSDA which means that can no longer continue.
Breaking this down a bit:
Up to now, verification has been something of a second class citizen. There are plenty of
reasons for this, some technical, some human.
Now point two: it may be that actually we all do perfect jobs of verification, but unless
we have a way of communicating that to people browsing our designs, all that effort gets
wasted.

And, most importantly, I want to convince you that we already have most of the tools we

need to do a damn good job. That said, there are certainly some areas where we could

make our lives easier with a bit more investment.

Open Source Hardware Verification

29th March 2019

1. Verification is Treated as Second Class

Only 2.8% of designs on OpenCores describe themselves as test and
verification related.

It’s easier to find designs than it is to find re-usable verification IP.

The motivations sometimes aren’t there to make verification seem
worthwhile.

Design is seen as the more interesting problem?

1. Verification is Treated as Second Class

Only 2.8% of designs on OpenCores describe themselves as test and
verification related.

It’s easier to find designs than it is to find re-usable verification IP.

The motivations sometimes aren’t there to make verification seem
worthwhile.

Design is seen as the more interesting problem?

20
19

-0
3-

07

Open Source Hardware Verification

1. Verification is Treated as Second Class

Now, I understand that this is open to interpretation. I absolutely do not mean to say people
thing verification isn’t important or necessary. I think we all know it’s important, but that upto
now in open source hardware, the focus has been on tooling needed for design: simulation,
place and route and so on. After all, you can’t do verification if you can’t build your design.
We’re now at the point where investment in verification is necessary. I don’t think it’s rea-
sonable to build something as large as a CPU and show it off as a reusable open source
component (with the expectation others will use it) without at least stating what kind of
verification has been done and how much of the design is covered by it.
Of-course, this isn’t applicable for every project, but if we want open source designs to
proliferate, this is what I think is needed.

One thing I’ve found since falling into academia: there is almost zero incentive to do veri-

fication on hardware designs. You want just enough to get defensible results and publica-

tions, because that’s what your funding depends on. Of-course some projects do put the

effort in, but this is not the norm in my experience. This is important because big open

academic projects around RISC-V are starting to set a benchmark for what open source

hardware projects look like.

Open Source Hardware Verification

29th March 2019

2. Evidence of Verification

Evidenced Verification Means:
A statement of what verification effort as been attempted.

A coverage number, representing the degree of design functionality stressed
by the verification.
I Slightly different for formal verification methods.

Why is this useful
Being able to answer questions like:

Have I seen instruction X followed by instruction Y?

Have I seen instruction X raise all of the exceptions it can correctly?

Does my bus master function correctly under stall conditions?

It lets people know where they can help out the most.

2. Evidence of Verification

Evidenced Verification Means:
A statement of what verification effort as been attempted.

A coverage number, representing the degree of design functionality stressed
by the verification.
I Slightly different for formal verification methods.

Why is this useful
Being able to answer questions like:

Have I seen instruction X followed by instruction Y?

Have I seen instruction X raise all of the exceptions it can correctly?

Does my bus master function correctly under stall conditions?

It lets people know where they can help out the most.

20
19

-0
3-

07

Open Source Hardware Verification

2. Evidence of Verification

So, this is the single most helpful thing new and existing projects can do to make them-
selves attractive to users. It’s also somewhere that open source hardware can do much
better than commercial counterparts.
In industry, IP gets delivered, and you take it on faith that because you paid for it, it’s been
well verified. The selling company will (hopefully!) have things like coverage metrics for
the design to say how much of the functionality is touched by the verification (and hence
tested), but this is not typically made available to customers of the IP.

Open source hardware projects can actually show off about how well verified they are.

Even an honest description of what the testbench.v file does is useful.



Open Source Hardware Verification

29th March 2019

2. Evidence of Verification

But...
There is no consistent way of showing this across existing projects.

Many projects simply don’t state what has been verified.

Absence of evidence is evidence of absence.

The software world loves badges... Maybe we could too?

2. Evidence of Verification

But...
There is no consistent way of showing this across existing projects.

Many projects simply don’t state what has been verified.

Absence of evidence is evidence of absence.

The software world loves badges... Maybe we could too?

20
19

-0
3-

07

Open Source Hardware Verification

2. Evidence of Verification

Unfortunately at the moment, it’s really hard to show this consistently across projects. Gen-
erating coverage numbers as a badge like software projects love to do would be fantastic.
But, continuous integration for hardware is hard (keep an eye on LibreCores CI though)
and only a few tools like Verilator support any kind of coverage collection.
Being able to quantify verification effort, and show it, is something which I think open source
hardware needs and will really benefit from. It will need some tooling investment, but if it
means we can look at a design and say ”this looks well verified, I can use this” or ”this bit
isn’t covered, I can contribute here”, then that’s a good outcome.

To borrow a phrase, ”trust, but verify”. We should be able to trust open source hardware

designs, and that trust should be based on verifiable verification efforts.

Open Source Hardware Verification

29th March 2019

3. We have (almost) everything we need!

Coverage Collection

Verilator supports line and toggle coverage.

Meta-HDLs can get line coverage for free from their parent language.

Functional coverage is a bit more work, but possible.

Verification Libraries
UVVM / OSVVM / VUnit / Cocotb

Formal Tools
SymbiYosys / Z3 and friends

github.com/ben-marshall/awesome-open-hardware-verification

3. We have (almost) everything we need!

Coverage Collection

Verilator supports line and toggle coverage.

Meta-HDLs can get line coverage for free from their parent language.

Functional coverage is a bit more work, but possible.

Verification Libraries
UVVM / OSVVM / VUnit / Cocotb

Formal Tools
SymbiYosys / Z3 and friends

github.com/ben-marshall/awesome-open-hardware-verification

20
19

-0
3-

07

Open Source Hardware Verification

3. We have (almost) everything we need!

Perhaps the best thing I can say now is that actually, there are already some fantastic
projects out there to make verification easier for open source projects.
If you are using Verilator then it already supports line and toggle coverage, you just have
to turn it on. For MetaHDLs, you can exploit their host language tools to get things like
line and branch coverage. Functional coverage it still an open problem in my opinion. If
you look at what’s possible in something like SystemVerilog, there’s nothing comparable in
open source tools at the moment.
In terms of verification libraries, theres a bunch of great stuff out there for VHDL, and
Cocotb is an abstracted framework which works with several HDLs.

Of-course, we’re very fortunate to have the formal tools and flow in the form of SymibiYosys.

The fact you can end-to-end verify a RISC-V CPU using only open source tools is some-

thing I find absolutely amazing.

Open Source Hardware Verification

29th March 2019

An open source verification wishlist

Re-usable behaviour specifications

I Use the same spec to generate testbenches / formal properties for different
languages / implementations.

Verification Libraries for Meta-HDLs

I Functional Coverage Collection

I Stimulus Generation

I Re-usable verification IP

A verification mindset

Companies: If you are open-sourcing a design, why not include the
verification infrastructure as well?

An open source verification wishlist

Re-usable behaviour specifications

I Use the same spec to generate testbenches / formal properties for different
languages / implementations.

Verification Libraries for Meta-HDLs

I Functional Coverage Collection

I Stimulus Generation

I Re-usable verification IP

A verification mindset

Companies: If you are open-sourcing a design, why not include the
verification infrastructure as well?

20
19

-0
3-

07

Open Source Hardware Verification

An open source verification wishlist

Now, having all of that is great, but I think we can do better. This is my wishlist as an open
source verification engineer:
Re-usable verification IP and design specifications are probably the best way to contribute
at the moment. If I can just download an AXI bus agent to use in my Verilator / GHDL
design, then as a designer, that saves me a huge amount of time. Similarly, easy stimu-
lus generation for different interfaces would be fantastic. Even better, you can imagine a
package manager like FuseSoC being used to just grab all the verification IP you need!
These re-usable libraries are somewhere that MetaHDLs can really show their worth. Ev-
ery one I’ve seen so far makes the claim that ”X is written in a high level language, which
also makes it perfect for verification”. Which is great! But I’ve never seen one with a corre-
sponding verification library, it’s always been about the design.

Also, It’s great that companies are starting to open source their hardware designs, or parts

of their frameworks. What would be fantastic is if they did the same with their verification

infrastructure. Of-course it helps if that IP is actually usable by current open source tools.

Google for example released a RISC-V program generator, but it’s all in SystemVerilog and

hence no good to the open source community.



Open Source Hardware Verification

29th March 2019

Learning from Industry

Remember: Industry has been through all of this before.

Use the lessons from industry to decide where to invest in tools.

I Methodologies, best practices etc.

Wilson Research Group Functional Verification Studies: 2012-2018

I Extremely good resource for looking at how commercial verification has
changed over time.

I Verification is not a solved problem: As of 2018, 84% of surveyed FPGA
design projects suffered a non-trivial bug escape into production

Learning from Industry

Remember: Industry has been through all of this before.

Use the lessons from industry to decide where to invest in tools.

I Methodologies, best practices etc.

Wilson Research Group Functional Verification Studies: 2012-2018

I Extremely good resource for looking at how commercial verification has
changed over time.

I Verification is not a solved problem: As of 2018, 84% of surveyed FPGA
design projects suffered a non-trivial bug escape into production20

19
-0

3-
07

Open Source Hardware Verification

Learning from Industry

The other thing that the open source community has going for it is that we essentially ”know
what’s coming” in terms of many technical challenges. Industry has been there before, and
there are hundreds of excellent articles, training materials and surveys on the topic.
This won’t be much of a surprise to many given how much overlap there is, even in this
room, between people being in industry and pushing for open source tooling.
I did want to briefly look at one survey in particular, because it nicely underlines the needs
and opportunities there are in building open source design verification tools and frame-
works. The Wilson Research group functional verification studdies, run by Harry Wilson at
Mentor, are a great resource for looking at trends and so on.

My favourite sentence from the most recent edition is there on the slide.

Open Source Hardware Verification

29th March 2019

Learning from Industry

Learning from Industry

20
19

-0
3-

07

Open Source Hardware Verification

Learning from Industry

My cherry-picked insight from the most recent survey is to compare language
adoption for FPGA development.
This graph shows the percentage of surveyed designs using each of the main
HDLs, and crucially, which ones they plan to use next year.
It’s pretty clear here, VHDL and Verilog are still king, with SystemVerilog and
C/C++/SystemC gradually gaining popularity. The other category is more of a
rounding error for design.

However...

Open Source Hardware Verification

29th March 2019

Learning from Industry

Learning from Industry

20
19

-0
3-

07

Open Source Hardware Verification

Learning from Industry

It’s a very different story for verification.
That other category has a much larger share, and that share is increasing. In the report, it
mentions Python specifically, but they note that all sorts of languages are being used.
In terms of which libraries/methods are being used for FPGAs specifically, UVM is the one
to watch, it’s the only one which has consistently gained share in industry since 2014. Of-
course, that’s not so useful to us in open source, so having alternatives like OSVM and
UVVM is really important.
The point in picking out these graphs is to underline that the big shift in industry is toward
standardised verification methodologies like UVM and SVA, even if the actual language
used is ”other”.

Making sure we can match these capabilities in OSDA, for whichever design language you

prefer, is going to be essential.



Open Source Hardware Verification

29th March 2019

Miscellaneous Talking Points

Verifying security claims

Human factors

I More software oriented people moving into hardware development.

I Agile development practices more suited to verification than to design?

I Different perspectives on product development and testing.

Commercial hardware development team structures look very different to
open source governance / development structures.

Miscellaneous Talking Points

Verifying security claims

Human factors

I More software oriented people moving into hardware development.

I Agile development practices more suited to verification than to design?

I Different perspectives on product development and testing.

Commercial hardware development team structures look very different to
open source governance / development structures.20

19
-0

3-
07

Open Source Hardware Verification

Miscellaneous Talking Points

I wanted to say much more than would reasonably fit in this talk, so in the spirit of
provoking discussion, I figured I’d touch on just a few.
Open Source Hardware gets touted as a solution to hardware security flaws. I can
get behind this to an extent, but security is predicated on functional correctness. If
you can’t show the latter, you don’t have the former. Even then, security flaws can
happen in perfectly functional designs. The problems arise because of system
level interactions. If systems consist of open source components, we need to
understand their interactions, not just components in isolation. This is an open
problem.
There’s a lot to be said for ”agility” in hardware design. I actually think it is much
better suited to hardware verification. What is a testbench if not a large piece of
software? Here is where rapid iteration helps most, not in the RTL.

Finally, in industry you tend to have a separation of design and verification engi-

neers to stop one repeating the other’s mistakes. Open source communities don’t

organise that way, so it’ll be interesting to see how big collaborative hardware

design projects manage this.

Open Source Hardware Verification

29th March 2019

Conclusions

Open source hardware designs should be proud to show off how well verified
they are.

Developing re-usable verification infrastructure is an extremely worthwhile
contribution to open source hardware development.

There is already plenty of material from industry on how to do a good job of
verification.

I Guides on doing the same thing with open source tools are another valuable
contribution.

We should remember that verification is as important as design. We can’t
afford to neglect it.

Conclusions

Open source hardware designs should be proud to show off how well verified
they are.

Developing re-usable verification infrastructure is an extremely worthwhile
contribution to open source hardware development.

There is already plenty of material from industry on how to do a good job of
verification.

I Guides on doing the same thing with open source tools are another valuable
contribution.

We should remember that verification is as important as design. We can’t
afford to neglect it.20

19
-0

3-
07

Open Source Hardware Verification

Conclusions

So in conclusion:
OSDA is brilliant, and theres a-lot of momentum and enthusiastic people involved
in making open source hardware designs a reality.
And, to keep this going, we need to pay more attention to either doing the verifi-
cation, or making sure we describe and show off what verification has been done.
Doing this will make open source designs more dependable, and make it easier
for people to contribute.
We have lots of tools to help do this already, and there are good opportunities to
contribute things like stimulus generation and functional coverage collection tools.
Industry has had to do all of this before, and we can learn a lot about which
approaches work best.

Thankyou for listening. I’m sure some of what I said needs more explanation or

qualification, so please do ask questions now or come and talk to me afterwards.


