
This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work. 
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

Hardware Verification In An Open Source Context
Ben Marshall

Department of Computer Science, University of Bristol, ben.marshall@bristol.ac.uk

Abstract—The last few decades have seen the complexity of
commercial hardware designs increase by multiple orders of mag-
nitude. This has driven corresponding increases in commercial
tool capability and the development of industry standard methods
to drive them. Over the same time period, open source hardware
development has lagged severely behind in terms of the scale
of attempted designs, as well as the tooling and methodology
capability to realise them. This capability gap is particularly
acute for verification flows. In this paper, we try to explain how
this capability gap appeared, and what it means for a nascent
open source EDA community. We also survey the state of the art
in commercial verification techniques, and list alternative open
source tools where available. Where open source alternatives are
lacking, we make suggestions for closing the gap. We also discuss
several human factors and challenges relevant to verification in
an open source context, and suggest a change in mindset is needed
to make open source hardware designs more trustworthy.

Index Terms—Open source, hardware, verification, EDA

I. INTRODUCTION

Complexity in hardware design has increased exponen-
tially over the last few decades. Driven by Moore’s law,
the complexity of VLSI designs, and the number of distinct
components on a chip has increased significantly. Taking
advantage of Moore’s law has required enormous investment
in EDA tooling at all stages of a design process. Particularly,
since the cost of re-fabricating a chip if a defect is found post
manufacture has increased significantly as process sizes have
shrunk.

With few exceptions, much of this development has been
driven by commercial companies like Cadence, Synopsys and
Siemens/Mentor, along with their acquisitions. The tools these
companies offer are closed source and very expensive to
licence. The size of designs being pushed through these tools
has also motivated industry to develop standard methods for
managing the complexity of functional verification.

In contrast, open source hardware (OSH) development has
lagged significantly in terms of available tooling (with some
admirable exceptions discussed later) and hence the size and
complexity of designs attempted. This is a particular problem
for verification tooling and methods. The relatively small
number of OSH designs actually manufactured has meant
less motivation to make the same investments in tooling and
methods seen in industry.

Recently, this has begun to change. A series of high-profile
feature, bug and security disclosures [1], [2], as well as long
lived anxiety as to the trust-worthiness of commercial hard-
ware designs, has motivated the building of auditable, open-
source alternatives. As a result, Open Source (OS) tools for
hardware synthesis, and even complete OS FPGA toolchains

have started appearing. The next step will be to enable
easy taping out of OS designs in high volume manufacture,
something already being worked on.

However, all of these developments miss a crucial part of
the hardware development picture: functional verification. The
OSH community has not yet faced the challenges of verifica-
tion at scale which commercial companies have. Further, while
there is considerable emphasis on creating and implementing
OS designs, comparatively little has been said about the state
and necessity of their verification. Though there are some
exceptions, in our experience we find verification is currently
a second class endeavour next to design in the context of OSH.

In this paper, we give some background as to how this
capability gap between OSH and software arose, and how the
community can work on closing it. The rest of the paper is
organised as follows: Section II-A provides some context on
how OSH got “left behind” in terms of its tooling support. Sec-
tion II-B includes a discussion of the current main approaches
to hardware verification used in industry, and the motivations
for their inception. Section II-C gives a short comparison of
capabilities between commercial and OS alternatives. Section
III then lists a set of open challenges in OSH verification.
These are themed around tooling, methodology and human
factors. Section IV concludes the points made in the paper.

II. BACKGROUND

In this section, we give some context about the current
capability gap in verification tooling and methodology seen
between the OS community and industry.

A. The capability gap

Fundamentally, the need for more capable EDA tooling
is driven by the need or ability to realise larger and more
complex hardware designs. As manufacturing process nodes
have shrunk, so the cost of making late stage design alterations
has increased [3]. When the cost of spinning a chip dominates
the cost of implementing a design, it becomes necessary to
spend more effort on ensuring its correctness. This has put
considerable back pressure on early stages in the development
cycle to find all functionality bugs as early in the design stage
as possible.

Given these driving forces behind tool development, it
becomes clear why such a capability gap has arisen between
industrial and OS communities. The OS community has not
yet attempted the same complexity or scale of designs seen in
industry. While there have always been OSH projects, only a
tiny fraction have found their way into actual silicon. Even



This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work. 
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

these devices are often only used in low volume, specific
use cases where they are not exposed to the more extreme
use and abuse which commercial devices tend to see. Hence
the community has not faced the same driving forces which
necessitate investment in verification infrastructure.

A similar point can be made for academic or research
projects which produce OSH artifacts. The unfortunate set of
motivations in academia can mean little or no incentive is
present for researchers to invest the time in verifying their
designs. This means the community suffers in terms of design
re-use, and the trustworthiness of any reported experimental
results. There is also a human difficulty in interesting students
and researchers in verification generally, which can be seen as
the somewhat less glamorous aspect of a project. The current
European Union mandate for “open access” research makes
it even more important that academic hardware artifacts show
evidence of verification effort.

While there are several notable and worthy exceptions
to this state of affairs, we maintain that these are indeed
exceptions, and that generally OSH verification capability and
practice lags behind what is seen in industry.

This is in stark contrast to the OS software community;
where there is considerable contribution to OS projects from
industry, as well as dependence on OS software by industry.
Because of this, OS software tooling and development prac-
tices have been able to advance in concert with commercial
counterparts. Indeed, many software companies make a virtue
of contribution to open source software projects. The same
cannot be said in the context of the traditional EDA / hardware
IP companies.

B. Approaches to hardware verification

Here we briefly describe several approaches and aspects to
hardware verification used in industry.

1) Constrained Random Verification: Constrained Random
Verification (CRV) techniques centre around automatically
generating random input stimulus, which is constrained to
only useful or interesting parts of the input domain of the
design. For example, one may test a CPU by randomly feeding
it 32-bit instruction words, though this might involve much
wasted effort unless the randomised words are constrained to
be mostly valid instructions.

CRV has seen much collaborative development across
industry, first through the Open Verification Methodology
(OVM) standard, and now the Universal Verification Method-
ology (UVM) standard [4]. EDA vendor specific tools such as
the E language from Cadence also support CRV, but are not
so widely used as they are not vendor neutral.

It is important to note that UVM is not just a library of code,
but also a prescriptive set of methods for building testbenches.
This includes how to partition code into re-usable blocks,
and a standard pattern for arranging these blocks within a
testbench architecture. Such methods have made it extremely
easy for engineers across different projects or even companies
to quickly understand and use a new testbench, focusing on

modelling the actual design rather than picking apart the
testbench hierarchy.

2) Coverage Metrics: One must be confident that all differ-
ent areas of a design are actually stimulated by the testbench.
For this, coverage metrics are used.

There are several different kinds of coverage metric used
in hardware verification which have direct analogues in the
software world. Line coverage of HDL source files, as well
as condition coverage (branch coverage in software) are easily
collected by simulation tools.

Additionally to this, hardware verification uses two notions
of coverage not often found in software development. The
first is toggle coverage, which records how many times each
signal has transitioned from 0 to 1 and 1 to 0. The second and
perhaps most powerful is functional coverage.

Functional coverage is much more abstract than the other
metrics described. It is designed to capture whether or not
higher level behaviour in a design has been observed during
simulation. For example, to say that an add instruction has
“been executed”, it is not enough to simply know we have
fed the design an add instruction. One must also record that it
was decoded correctly, tracked through the pipeline, produced
the correct side effects and retired successfully. All of these
observed together count as the functional covering of the add
instruction. This notion would then be extended to see that
we execute all or as many variants as is feasible of the add
instruction with different operands and input values. As with
stimulus generation, it is possible to make functional coverage
models re-usable across different designs. This is particularly
useful for CPU ISAs, where there may be many different
implementations of the same specification.

Coverage metrics are often developed in parallel to the
stimulus generation parts of a testbench. By recording what the
design actually does using coverage metrics, one can identify
gaps in stimulus generation and fill them.

3) Formal Verification: In the context of hardware ver-
ification, this refers to use of Bounded Model Checking
(BMC), Satisfiability Modulo Theories (SMT) and other for-
mal reasoning methods to prove that some set of correctness
properties about the design hold true. Despite having existed
as a technique for hardware verification for some decades, it
has only recently begun to be used regularly and on similar
design sizes as traditional CRV techniques.

The main advantages of formal methods in verification is
that they cover the entirety of the input space. This means
that very subtle bugs can be found very quickly, which might
take much longer with traditional simulation based approaches.
Such methods consequently give an extremely high degree
of confidence about the design, which is essential for high-
assurance applications like automotive CPUs.

While CRV is a very general method applicable to most
designs, formal verification requires more care in how and
where it is applied. It can suffer from state-space explosion,
where the memory required to represent the possible states of
the design make it infeasible to work with. This means that
formal verification tends to lend itself better to verification of



This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work. 
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

control paths and logic, rather than data paths. With careful
management however, there is no reason formal methods
cannot be applied to data-paths.

Unlike CRV (more specifically, UVM based CRV), there is
not the same level of industry standard methods for managing
a formal verification effort. However, several papers exist [5],
[6], [7], [8], [9], [10] which give good overviews of how
to structure a formal verification flow, and there are enough
similarities between them to suggest that consciously or not,
there is an ongoing trend toward a common method.

4) Trends in functional verification: Here we extract some
key points from the Wilson Research Group Functional Verifi-
cation Studys run on behalf of Mentor Graphics [3], [11], [12].
The 2018 study in focuses on FPGA verification in particular,
which makes it more relevant to the OSH community given
the better tooling availability than for ASICs. Some of the key
findings from the reports relevant to the OS community are:

FPGA designs are including more embedded CPU cores
[12]. This implies a need for robust reusable verification tools
for the cores themselves, and ways to verify their integration
into a wider system.

FPGA and ASIC systems are seeing a transition from block-
level verification to system-level verification. As more OS
components appear, integrating them correctly into a complete
system is an inevitable challenge for the community.

More designs are including dedicated security hardware
[12]. These components require particular attention from a
verification perspective, as their system level interactions can
reveal side-channels for attack. Making verifiable claims as to
the security of OSH and systems will become increasingly
important if the promise of auditable hardware is to be
realised. Section III-D discusses security challenges in more
detail.

As of 2018, 84% of surveyed FPGA design projects suffered
a “non-trivial bug escape into production”. The trends for
causes of bug are particularly illustrative. While functional
/ logic bugs dominate (underlining the need for effective
block-level verification), the percentage of these is decreasing
over time. According to [12], “this reduction of ’logic and
functional flaws’ is likely due to the FPGA market maturing
its verification processes” and “increased adoption of mature
design IP for integration”. The implication for OSH is that
re-usable verification IP is a worthy investment. Functional
and logic flaws have been replaced with problems in timing,
clocking, crosstalk and firmware. Firmware is expected, given
the corresponding increase in embedded CPU usage.

We suggest that there is considerable scope for the OS com-
munity to learn from historic verification trends in industry.
As a community, we are uniquely forwarned in terms of the
verification challenges yet to be faced, and can make more
informed decisions about investments in tooling as a result.

C. Open source and industrial tool comparisons

From Table I, we see even though the table is far from
exhaustive in its tool listing, most coarse grain features of a
hardware implementation flow are already supported by OS

tools. However, the degree and flexibility of that support often
lags that of the commercial tool-sets. Further, as is the case
with verification, there is a difference between tool capability,
and exercising of that capability by OS projects.

D. Case Study: OpenCores.org

Here we conduct a very simple survey of the OpenCores
website[13], a popular repository for OSH designs. As of
December 2018, OpenCores contains 1182 projects, where
each project represents some hardware IP block.

Of these, 31 (2.6%) are “OpenCores Certified”. This means
the project meets some completeness requirements. These in-
clude presence of the design files, flow scripts, documentation
and “self-checking testbenches”.

OpenCores also labels projects based on their status, which
ranges from “planning” through “alpha”, “beta” and “stable”
to “mature”. To qualify as a “stable” or “mature” project, the
design must be tested and validated by the project developers
and community members. There are 47 (4%) mature projects
and 475 (40%) stable projects.

Across the site, there is no standard way of quantifying the
level of confidence in the functional correctness of a design, or
reporting coverage numbers. This is an essential set of metrics
for any repository of IPs. Without them, it is impossible to be
confident in a design without personally checking it. In the
software world, project hosting sites like Github, Gitlab and
3rd party plugin providers make it very easy to show up front
the testing and coverage status of a project. We suggest this
practice be adopted by the OSH community without delay.

Further, there is a heavy skew on the site toward hardware
components rather than re-usable verification IP. Only 33
(2.8%) of the listed projects are categorised under “Testing
/ Verification”. We believe this further underlines a need for
the OSH community to invest more in re-usable verification
infrastructure, verification efforts generally, and reporting /
quantifying the verification effort that has been undertaken.

III. CHALLENGES IN OPEN SOURCE HARDWARE
VERIFICATION

A. Behaviour Specification

One of the hardest problems in both hardware and software
development is the actual specification of intended behaviour.
Historically, this has been done using natural language speci-
fications. However this leaves considerable room for misinter-
pretation and ambiguity.

More recently, there have been efforts to create formalised
specifications, from which large amounts of both design and
verification infrastructure can be generated or mechanically
derived. The benefits from such approaches are numerous,
and analogues exist in other fields showing how powerful for-
malised specifications are. One example is machine-checked
proofs in cryptography, where a formalised mathematical
expression of a cipher or protocol is used to prove its security
under some adversarial model. As [14] shows, these types of
formal specification are directly relevant to hardware design
as well.



This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work. 
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

Tool Coverage
Collection

Coverage
Management Simulation Formal

Proofs
Waveform
Analysis Synthesis Place

Route Open Source

Verilator X X X
Icarus Verilog X X
Yosys X* X X
GTKWave X X
GHDL X X
Qflow X X
nextpnr X X
Verilog To Routing X X
Synopsys VCS X X
Synopsys VC Formal X
Synopsys Verdi X X
Synopsys DC X
Synopsys ICC X

TABLE I
A COARSE FEATURE COMPARISON BETWEEN VARIOUS OS TOOLS AND (FOR THE SAKE OF EXAMPLE) THE COMMERCIAL SYNOPSYS TOOL SET. NOTE:

YOSYS ITSELF DOES NOT NECESSARILY PERFORM THE FORMAL PROOFS, BUT CONVERTS HDL INTO A FORM SUITABLE FOR PERFORMING FORMAL
PROOFS ON IT.

In industry, the recent introduction of the Portable Test
and Stimulus Standard (PSS) [15] by the Accellera standards
body goes some way to addressing this problem. There are
various other commercial and OS projects attempting to create
formalised specifications of behaviour [16], [17], [18], [6].
Particularly noteworthy is the effort to create a formalised
specification for the RISC-V ISA [19], [20], [21], [22]. While
the development process for this is not open, many of the
candidates are, and provide informative examples how to
create such specifications.

For OSH projects, accurate specification of behaviour will
become more critical as the complexity of designs and the
number of functioning agents within the system increase.
While we make no recommendations as to which method of
formal specification should be used, there are considerable
advantages to the OS community in adopting their use more
generally.

Specific challenges to adopting such techniques will revolve
around correctness preserving transformation and mapping of
formalised specifications onto the actual designs, and verifying
that one matches the other.

B. Formal Verification

Thanks to the SMT2[23] backend of Yosys[24], the OS
community is already well placed use formal methods for
verifying designs. There are already some impressive examples
of re-usable formal verification frameworks for RISC-V CPUs
developed using Yosys [17].

In terms of future challenges, there is considerable scope
for developing standard design patterns for formal verifi-
cation tools. There are a number of industrial papers on
structuring formal verification efforts, and identifying designs
most amenable to formal methods [10], [8], [5]. Most of
the techniques they describe are transferable into existing OS
tools, what is lacking are easily accessible and explicit “how
to” guides for how to apply them to larger designs.

One missing piece of functionality at the moment is the
notion of “property set completeness”, as described in [5].
This is an automatic way of checking the set of correctness

properties being used cover enough of the design. Without this
automated check, one must manually audit the set of correct-
ness properties to ensure all parts of the design functionality
are hit.

Given intended design functionality is usually expressed
much more abstractly than the actual design itself (often natu-
ral language vs. RTL), this also leads to significant effort being
required to correctly abstract the right information at the right
time from the design. An incorrect abstraction will render any
formal verification results useless. While careful structuring of
the interface to formal checkers can help manage this, there is
scope for developing ways to correctly and robustly map high
level specifications of intended design behaviour onto lower
level implementations of those specifications.

We suggest there is also scope for extending existing formal
methods to work at a system level. Given the number of bugs
which manifest due to either integration errors or interactions
between hardware and software [12], as well as the security
claims made at a system level (see section III-D), it is not
enough to show that individual blocks are functionally correct.
As the OSH community moves from developing block level
designs to system level designs, verifying integration of many
different blocks will become increasingly important.

C. CRV and Coverage Metrics

CRV and coverage metrics are areas where there is a large
capability and practice gap between the OS and industrial
communities. Part of this is due to UVM being implemented in
SystemVerilog. SystemVerilog is an enormously complicated
language for which only commercial tool support exists.
While it may not be a sensible use of time to build an
OS implementation of SystemVerilog; replicating some of its
language features such as functional coverage specification and
collection would be a useful contribution to existing tools.

In terms of stimulus generation, we believe it is worthwhile
to take many of the method and design patterns described
in UVM, and recreate them for OS usage. Open source
examples of re-creating the UVM approach include Coverify’s
vlang implementation of UVM [25] and UVVM for VHDL



This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work. 
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

[26]. Likewise, AMD and Cadence have collaborated on a
multi-language framework for UVM, called UVM-ML [27].
Several new hardware design languages (Clash [28], Chisel
[29], MyHDL [30], SpinalHDL [31]) reference how their
host language can make stimulus and re-usable verification
infrastructure easier to express. However, we see little evidence
of this in existing OS projects. A concerted effort to build
stimulus generation frameworks in these languages, which are
interoperable and/or usable with existing Verilog or VHDL
designs would be very valuable to the entire community.

The same is true for coverage collection. Line, condition and
toggle coverage should become the bare minimum of reported
statistics for projects claiming any kind of verification effort.
We note that this is not strictly relevant for projects relying
totally on formal verification methods, in which case things
like environment assumptions should be stated.

Again, there is considerable scope for developing ways
to express re-usable functional coverage metrics that can be
integrated with existing simulation tools. This is especially
important given the limited support for functional cover-
age modelling with existing OS HDL simulators. We note
Verilator supports specification of functional coverage using
SystemVerilog Assertion (SVA) syntax, but not the actual
SystemVerilog Coverage features. Without clear reporting of
coverage metrics, it is impossible to quantify the degree of
confidence in any constrained random verification effort.

D. Security Claims and Assurances

A common argument for adopting OSH is its auditability,
and the confidence this gives in it’s security claims over a
closed source counterpart.

While this is true in generality, it is a point derived partially
from the software world, and some important distinctions
apply. Open source software security claims are predicated on
the assumption vulnerable software is updated when a bug is
found. This is inevitably more difficult for hardware. The pic-
ture is further complicated by how some vulnerabilities only
manifest at the system level, due to unanticipated interactions
between otherwise secure or trustworthy components.

To make OSH truly more trustworthy than closed source
counterparts, considerable effort will be required to audit
whole systems prior to their deployment. This is arguably
where OSH has an opportunity to do better than commercial
hardware, since such audits can be undertaken publicly, and
by many more people. Indeed, this is particularly important,
since hardware security is a specialist field with relatively
few practitioners. The easier it is for this knowledge to be
shared and put to use in the open, the more confidence we can
have in OSH security. Further, all security claims are based
on the assumption the underlying system and components are
functionally correct. Thus, any security claims must be backed
up by evidence of functional verification.

E. Human Factors

While technical challenges to enabling better verification of
OS hardware described above are important, in our experience

there are several human and organisational factors which will
play a more influential role. In terms of methodology and how
to organise development of OS hardware, there are several
key differences to commercial development and culture which
must be faced.

In industry, development teams are often rigidly structured
in terms of their responsibilities. Indeed, verification and
design teams are often kept disjoint as a safeguard against
misinterpreting specifications. As a result, many development
methods in industry do not directly transfer into the kind of
OS community we see in the software world. This world
is typically more disparate, with individuals responsible for
all aspects of parts of a code base. It is not reasonable to
expect the OS community to rigidly organise itself to practice
commercial development methods. Nonetheless, as more and
larger OSH projects appear, this will become an organisational
challenge to be aware of, and we expect to see new ways
of organising hardware development to appear which have
not had the chance to flourish in commercial development
environments.

A related point is how many OS software enthusiasts are
becoming part of the OSH community. While this is heartening
and certainly a positive development, there are cautions to
be mindful of as well. The software development mindset
has become dominated by “agile” development practices [32].
While software has the luxury of being continually updatable,
for many hardware designs (ASIC or FPGA) there is often
a hard stop to development when the design is finally de-
ployed. The mindset of “it can be fixed in a later release” or
the concept of a “minimum viable product” rarely apply to
hardware development. This does not preclude the adoption
of agile practices by the hardware community, and there has
already been discussion about how and whether to adopt agile
methods in the context of hardware development [33], [34].
While answers to these questions are beyond the scope of this
paper, the mix of development methodologies from software
and hardware worlds which are bound to meet in the OSH
community is an important consideration going forward.

Given the mix of technical backgrounds people in the
OSH community will likely have, we believe one of the
key intersecting challenges will be the attitude to design
verification. Rather than focusing on enabling OSH design, we
suggest OSH development may be a more appropriate term.
While the distinction is small, it should be recognised that
design methodology is but one aspect of development and
that verification strategy is also a vital component. Indeed,
we should foster a mindset which emphasises that verification
is a non-optional part of any OSH project.

IV. CONCLUSION

The OSH community has an excellent amount of momen-
tum behind it in terms of enabling larger and more complex
designs. There is a danger however, that the verification and
methodological aspects of hardware development are being
neglected. If OSH is to achieve the same kind of impact as
OS software, more emphasis must be placed on evidenced



This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work. 
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

verification efforts. We make the following concrete sugges-
tions as to how projects and individuals within them can start
combating this:

Open source hardware projects should state how much
functional verification has been undertaken. This should be
qualified by function/line/condition/toggle coverage numbers
for CRV based approaches, and/or an explanation of the formal
properties proved as appropriate. At a bare minimum, these
coverage numbers should be immediately obvious to anyone
considering re-using an existing design.

Any verification infrastructure development should be done
with reusability in mind. Projects like OpenCores[13] serve as
a good example of a repository of re-usable components, but
presently is heavily weighted in favour of hardware designs,
rather than reusable verification infrastructure. This is partic-
ularly useful and achievable for things like assertions for bus
interfaces and models of CPU ISAs. One should not need to
re-write a set of checkers for an AXI / Wishbone interface for
every project.

The same goes for stimulus generation. There is con-
siderable scope for contribution around building constrained
random stimulus generators for the newer high-level HDLs,
or even for Verilog via its VPI interface.

As well as re-usable technical artifacts, effort should be
made to share within the community successful approaches to
hardware verification, and to adopt/adapt best practice from
industry. This is particularly true with formal verification
approaches, where the OS community has already had con-
siderable success in re-usable infrastructure.

In industry, there is a large volume of training material avail-
able for the various verification tools and methods. Curating
a similar set of “how to” guides and tutorials focused on OS
tooling would be a valuable contribution to the community.

As a community, we must make verification and accurate
reporting of verification effort a first class component of OSH
development.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading kernel
memory from user space,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 973–990.

[2] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,
2018.

[3] H. D. Foster, “Trends in functional verification: a 2014 industry study,”
in Proceedings of the 52nd Annual Design Automation Conference.
ACM, 2015, p. 48.

[4] Accellera, “Uvm (universal verification methodology),”
https://www.accellera.org/downloads/standards/uvm.

[5] J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Black-
more, and F. Bruno, “Complete formal verification of tricore2 and other
processors,” in Design and Verification Conference (DVCon), 2007.

[6] U. Kühne, S. Beyer, J. Bormann, and J. Barstow, “Automated formal
verification of processors based on architectural models,” in Formal
Methods in Computer-Aided Design (FMCAD), 2010. IEEE, 2010,
pp. 129–136.

[7] R. Baranowski and M. Trunzer, “Complete formal verification of a
family of automotive dsps,” DVCon Europe, 2016.

[8] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli, “Method-
ology and system for practical formal verification of reactive hardware,”
in Computer Aided Verification, D. L. Dill, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, pp. 182–193.

[9] N. Kim, J. Park, H. Singh, and V. Singhal, “Sign-off with bounded
formal verification proofs,” in Design and Verification Conference (DV-
Con), 2014.

[10] H. Foster, L. Loh, B. Rabii, and V. Singhal, “Guidelines for creating a
formal verification testplan,” Proc. DVCon, 2006.

[11] H. D. Foster, “Trends in functional verification: a 2016 industry study,”
2016.

[12] ——, “Trends in functional verification: a 2018 industry study,” 2018.
[13] Various Authors, “Opencores.org,” https://opencores.org.
[14] J. R. Kiniry, D. M. Zimmerman, R. Dockins, and R. Nikhil, “A formally

verified cryptographic extension to a risc-v processor,” 2018.
[15] Accellera, “Pss 1.0 language reference manual,”

https://www.accellera.org/downloads/standards/portable-stimulus.
[16] “End-to-End Verification of Arm Processors with Isa-Formal,” in Pro-

ceedings of the 2016 International Conference on Computer Aided Veri-
fication (CAV16), ser. Lecture Notes in Computer Science, S. Chaudhuri
and A. Farzan, Eds., vol. 9780, no. 9780. Springer Verlag, July 2016,
pp. 42–58.

[17] C. Wolf, “End-to-end formal isa verification of risc-v processors
with riscv-formal,” http://www.clifford.at/papers/2017/riscv-
formal/slides.pdf.

[18] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala et al., “Kami: a
platform for high-level parametric hardware specification and its modu-
lar verification,” Proceedings of the ACM on Programming Languages,
vol. 1, no. ICFP, p. 24, 2017.

[19] T. Bourgeat, “Formal semantics of riscv,” https://content.riscv.org/wp-
content/uploads/2018/05/slidesThomasBourgeat.pdf.

[20] R. Nikhi, “A formal spec of the risc-v instruc-
tion set architecture, written in bluespec bsv,”
https://github.com/rsnikhil/RISCV ISA Formal Spec in BSV.

[21] A. Armstrong, T. Bauereiss, B. Campbell, S. Flur, K. E. Gray, P. Mund-
kur, R. M. Norton, C. Pulte, A. Reid, P. Sewell et al., “Detailed models
of instruction set architectures: From pseudocode to formal semantics,”
in 25th Automated Reasoning Workshop, 2018, p. 23.

[22] T. Bourgeat, “Formal semantics of risc-v,” https://content.riscv.org/wp-
content/uploads/2018/05/slidesThomasBourgeat.pdf.

[23] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version
2.0,” in Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, UK), A. Gupta and D. Kroening, Eds.,
2010.

[24] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
[25] Coverify, “Vlang port of uvm (universal verification methodology),”

https://github.com/coverify/vlang-uvm.
[26] Bitvis, “Open Source VHDL Verification Library and Methodology,”

https://github.com/UVVM/UVVM.
[27] Advanced Micro Devices and Cadence Design Sys-

tems, “UVM-ML Open Architecture version 1.10.2,”
http://forums.accellera.org/files/file/65-uvm-ml-open-architecture/.

[28] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards, “Clash:
Structural descriptions of synchronous hardware using haskell,” in
Digital System Design: Architectures, Methods and Tools (DSD), 2010
13th Euromicro Conference on. IEEE, 2010, pp. 714–721.

[29] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE. IEEE, 2012, pp. 1212–1221.

[30] J. Villar, J. Juan, M. Bellido, J. Viejo, D. Guerrero, and J. Decaluwe,
“Python as a hardware description language: A case study,” in Pro-
grammable Logic (SPL), 2011 VII Southern Conference on. IEEE,
2011, pp. 117–122.

[31] Various Authors, “Spinalhdl,” https://github.com/SpinalHDL/SpinalHDL.
[32] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,

M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” 2001.

[33] M. Bartlet, “Is agile coming to hardware development?”
https://www.design-reuse.com/articles/37187/is-agile-coming-to-
hardware-development.html.

[34] N. Johnson, “IC Development and the Agile Manifesto,”
http://agilesoc.com/articles/ic-development-and-the-agile-manifesto/.


