LegUp High-Level Synthesis
and its Commercialization

Jason Anderson
Workshop on Open-Source Design Automation (OSDA)
March 29, 2019
https://janders.eecg.utoronto.ca
http://legupcomputing.com

1 The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
% UNIVERSITY OF TORONTO

Specifying Computations

Write Software for a Processor
- Easy (comparatively speaking)
- Flexibility - lower performance

Design Custom Hardware
- High performance, low power
- Need specialized knowledge

of Electrical & Computer Engineering

% The Edward S. Rogers Sr. Department
[@9 |
%) UNIVERSITY OF TORONTO

e
FPGA-Based Acceleration

- Implementing computations in hardware can
have speed/energy advantages over software:

- Biophotonic simulations: 4X speed-up, 67X more
energy efficient [Cassidy, Betz, FCCM’14]

- Options pricing: 4.6X faster, 25X more energy efficient
[Tse, Thomas, Luk, TVLSI'12]

- Deep learning accelerator on Arria 10: 1.4 TOPS, 1020
iImg/s for ImageNet inference [Aydonat et al., FPGA17]

- Microsoft Bing search: 2X speed-up, 29% latency
reduction [Putnam et al., ISCA'14]

%ﬁ% The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

The Era of FPGA Cloud Computing is Here

June’14
Be Microsoft

Oct'16
B Microsoft

Microsoft rolls out FPGAs
in every new datacenter

Microsoft accelerates
Bing Search with
FPGAs

Nov’16

.I i
LT gmazon

LT bservices

NIMBIX

Jan’17

(- AlibabaCloud

&> Tencent Cloud

Alibaba and Tencent deploy
FPGAs in their cloud

Jul ‘17

&

Baidu Cloud
Sept ‘17

Ve

HUAWEI

Rapidly emerging FPGA-as-a-Service landscape

Many more

Aug‘l8 B

I
SK’,’:elecom

SKT deploys
FPGAs for Al
acceleration

Amazon and Nimbix
deploy FPGAs in their
cloud

Baidu, Huawei
deploy FPGAs in
their cloud

e
Problem: FPGAs Are Difficult to Use

High level

Hardware description

®

* FPGA design is difficult even for hardware engineers
Software engineers simply cannot use FPGAs

FPGAs T CPUs/GPUs

+ Software is relatively easy

* Design time: weeks ~ months

* 10 software engineers for every
hardware engineer

The Edward S. Rogers Sr. Department
- of Electrical & Computer Engineering

72 UNIVERSITY OF TORONTO

* Requires specialized knowledge to
design hardware
* Design time: months ~ year

5
A Solution

SECOND EDITION

THE

High-level

PROGRAMMING Synthesis

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

ENTICE HALL SOFTWARE SERIES

Flexibility/ High-performance/
Ease of Use Energy-efficiency

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

LLILL]

UNIVERSITY OF TORONTO

HLS Value Proposition

A

>
>0 |)
hd
= 0
o o
R E Software
EE
2 21\ ,
5 O
(G-

>

Performance
% The Edward S. Rogers Sr. Department

@ _ of Electrical & Computer Engineering

LLILL]

%% UNIVERSITY OF TORONTO

T
HLS Value Proposition

A
>
>2|)
= 9
8 O
= Software
ST
£g
8B | -
3o
(
FPGA
Hardware by HW designer
design
\ en
>
Performance

% The Edward S. Rogers Sr. Department
@ _ of Electrical & Computer Engineering

LLILL]

%% UNIVERSITY OF TORONTO

T
HLS Value Proposition

Can be updated

A regularly
>
= % 4 N [FPGA Can be done by both
‘S G SW/HW designers
S % Software -
g uco Software
- AR -
g 4 programmable
00
FPGA
Hardware by HW designer
design
g Y,
>
Performance

% The Edward S. Rogers Sr. Department
@ _ of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

T
Benefits of HLS

- Time-to-market (lower NRE)

- Easier modifiability/maintainability
- Design spec is in SW

- Important for some appls where spec isn’t firm or changes
frequently, e.g. finance models

- Rapid exploration of HW solution space

- Make FPGA HW accessible to SW engineers
- Bring the energy and speed benefits of HW to those with SW skills

%& The Edward S. Rogers Sr. Department

I'. of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

-
The Time is Right for HLS

- HLS papers first appeared in the 80’s
- e.g., Yorktown Silicon Compiler (IBM)

- Many “false starts”
- e.g. Synopsys Behavioral Compiler in 90’s

- S0... why should it fly now?
- Hardware size and complexity becoming unmanageable

- Can’t ride wave of processor perf. improvements

- Must deliver better speed/power through other means
- Improvements in compiler technology
- FPGA is the right “IC media” for HLS

%& The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

XJ UNIVERSITY OF TORONTO

s
LegUp High-Level Synthesis

- Programming layer that can target any FPGA

| LegUp
o &1 LATTICE SN
VIVADO! L|be@\ “#" DIAMOND achronix

{

software test &
debug

LegUp Overview

Program code

int main() {

add|();
mult();
sub();

}

s

SW Profiling

—

LegUp

Processor

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

72 UNIVERSITY OF TORONTO

I
LegUp Overview (2)

- Under development since 2009

- 5000+ downloads since first release in 2011
- Open-source license for non-commercial research purposes

- 20+ conference/journal publications, book chapter, multiple
awards; community Award at FPL, BP Award at FPL 2017

- Used LegUp to teach summer courses in HK, Harbin, Europe
- Many grad and undergrad “LegUp alumni”

LegUp High-Level Synthesis
LegUp is an open source high-level synthesis tool being developed at the Team
Online Demo University of Toronto. The LegUp framework allows researchers to improve Cto = Yu Ting (Joy) Chen
Tutorials Verilog synthesis without building an infrastructure from scratch. Our long- = Hsuan (ulie) Hsiao
term vision is to make FPGA programming easier for software developers. = Nicholas Giamblanco

Publications

Video Presentations The LegUp high-level synthesis tool is freely available, however, only non- Supervisors

eeeeeeeeeeeeee commercial, not-for-profit use of the software is permitted (see license). If you = Jason Anderson

ooooooooooooo are interested in commercial use of the LegUp software, please visit: LegUp = Stephen Brown

e legup.eecg.toronto.edu
Alumni []] []

eeeeeee
= Andrew Canis

gen | = Jongsok Choi

5555555 ¢ 15) Ru (Lanny)

uuuuuuuu (o]

Quality of Results el = samridhi Bansal

rrrrrrrrr s Zakary Georgis-Yap
= Blair Fort

uuuuu The video below presents an overview of the LegUp project.

''''''' ‘

“““““““ N UNLYVYERDLIL I U 1IURKUN1UV
g

I —
LegUp Overview (3)

- Why?

- Few open-source HLS projects

- Addresses key FPGA challenge: too hard to program
- Xilinx/Altera didn’t have HLS

- Inspired by success of other projects:
- VPR/VTR: FPGA architecture, packing, placement, routing
- ABC: logic synthesis

- Do a “big” project with many students

- Had industry and government funding for it...

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

Unique Features and Recent Directions

{ The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

LI L]

%% UNIVERSITY OF TORONTO

SoC Generation

- With a single command, LegUp generates a System-on-
Chip with embedded processor & hardware accelerators
1. User designates function(s) for hardware acceleration
LegUp performs software/hardware partitioning
LegUp compiles hardware partition into hardware accelerator
Software partition is compiled for an embedded processor
Complete system is generated with memories and interconnect

o &> Wb

%& The Edward S. Rogers Sr. Department
7 | of Electrical & Computer Engineering

XJ UNIVERSITY OF TORONTO

I
System-on-Chip: MIPS Soft Processor

Local Local
Memories Memories

MIPS Processor HW Accelerator HW Accelerator

{

|
|
|
|
|
|
1
1
1
1
1
1
| < INTERCONNECT
1
1
1
1
1
1
1
1
1
1
1
1

g

On-Chip Cache
Memory

_ 0 /

@ Off-Chip MemoryALTERA DE2/DE4/DE5 Board

% The Edward S. Rogers Sr. Department
% | of Electrical & Computer Engineering

X UNIVERSITY OF TORONTO

5 /

e
System-on-Chip: ARM Hard Processor

Local Local
ARM Processor
HW Accelerator HW Accelerator
On-chip Cache

INTERCONNECT >

u Off-Chip Memory

ALTERA DE1-SoC/Arria-SoC

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO

nnnnn

Parallel Software to Parallel Hardware

- With hardware, one can exploit spatial parallelism

- Unfamiliar to software engineers

- LegUp can synthesize software parallelism (Pthreads/OpenMP) into
spatial hardware parallelism

- Each SW thread synthesized into a HW module

e main() Top
mem ctrl
/R pthread create
RAM|(ROM
kernel()
" pthread join kernelO||kernell|[kernel2
e % The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

TVLSI'17 '. UNIVERSITY OF TORONTO

ML-Based Area Reduction Advisor

* Apply ML for prediction and/or decision making in HLS

of
program reduced ALMs
variables DFG reduced

~e -

& area
impact

C program %a.1 — 41 — Report:
ranked Modified
aes %b — Predictor—t— 8 list of var —*
C program

e

* Finds spatially
localized features

 Finds non-linear
relationships that
are data-driven

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

&) UNIVERSITY OF TORONTQ)

Analytical CNN-based

\1" The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

B8 B

%% UNIVERSITY OF TORONTO

AREOR

DATE'18

-
CNN-Based Circuit Area Predictor

Map a program’s DFG onto an input image
representation for the CNN

#% The Edward S. Rogers Sr. Department
oI & P
of Electrical & Computer Engincering &% The Edward S. Rogers Sr. Department

%Y UNIVERSITY OF TORONTO '3
¥ TR

Memory Architecture Synthesis

addr - data out

What if kernel0 and kernell want to access the RAM in the same cycle?

Automatically partition RAM into sub-RAMs
based on kernel access patterns

% The Edward S. Rogers Sr. Department
@ _ of Electrical & Computer Engineering

LLILL]

% UNIVERSITY OF TORONTO

FPL'17

Memory Architecture Synthesis (2)

- Profile multi-threaded program behavior

- Partition arrays into sub-arrays (implement in separate RAMs)
to provide threads with exclusive access (to extent possible)

Execute program’s memory
trace with hypothetical array
partitioning

Estimate stalls due to arbitration

More
partitionings to
try?

(d) Block Cyclic

{ The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

LI L]

% UNIVERSITY OF TORONTO

Selected partitioning

B
Multi-Clock HLS

- Partition circuit into modules operating on separate clock domains

- Why? Raise circuit performance by allowing sub-circuits to operate as
fast as possible

- Automatically insert clock-domain-crossing circuitry
- Proper handing of memories accessed by modules in different

domains
Local shared Local shared
Global Memory
Clk 1 memory Clk 2 Clk 2 Clk 3 Clk 2 memory Clk 3
Port A Port B Port A Port B Port A Port B

F S

"""""""""""""""""" IR RN

Local Port E Local Port Global Port Global Port Local Port i Global Port Local Port
Module A KCEEEED Module B Module C K{EEEED> Module D
Clock Domain 1 Clock Domain 2 Clock Domain 3

FCCM1K 0

HLS for Dynamic Memory

- HLS tools cannot support synthesis of malloc/free
(new/delete), yet these are used heavily in programs

- Researching approaches to realize in hardware

vold foo(..) { Heap(s) in FPGA RAMs

p = malloc(..) HW

allocator

free (q)

1 The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

» UNIVERSITY OF TORONTO

HLS Research Challenges

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

188 88

N UNIVERSITY OF TORONTO

Quality of the Hardware

- HLS-generated circuits may not be as “good”
as human-expert-designed circuits

s =~

- However, HLS-generated circuits are better
(speed+energy efficiency) than SW on a
processor in many/most cases

& The Ed 1d S. Rogers Sr. Departme
. of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

I
FFT. Hard to Auto-Synthesize

x(0) » e Y(0)
x(1) o X(4)
x{(2) » X(2)
x{3)e . X(6)
x(d) » - X{1)
x(5) e * X(3)
x(6) » X3}
we
x(7) e — X(7) s Sr. Department

uter Engineering

% UNIVERSITY OF TORONTO

Syntactic Variance / Constraints

« HLS tool QoR highly sensitive to style of
input code + constraints

for (i = 0; i < 100; i++) {| for (i = 0; i < 100; i++) {

if (A[i] & 1) templ = sum + A[1];
sum += A[i]; temp2 = sum — A[i];
else sum = (A[i1] & 1) ?
sum -= A[1]; templ : temp2;
} }

rs Sr. Dep

Possibly cannot loop pipeline Can Ioop plpell\rlg E;‘;“E“Og;;‘gei?%o

-
Syntactic Variance / Constraints (2)

SW vs. HW Latency

262144

32768

4096

512

Latency in ns (log scale)
R

PathDelays PathGains ChannelFunction
M Baseline (ns) m Restructured (ns) = Bit-width (ns) ®m PUP (ns) m SW (ns)

Matai et al., “Designing a Hardware in the Loop Wireless Digital Channel Emulator for
Software Defined Radio”, FPT 2012.

Raising Abstraction Further / Beyond C

- Learning curve to write HLS-style software+pragmas

- Libraries for specific domains
- Easy-to-use C/C++ libraries with clean API
- Underlying implementation of functions is written in “HLS style”
- Machine learning, compression, computational finance

- Domain-specific languages (DSLSs)

<l

MATLAB

% The Edward S. Rogers Sr. Department
@' of Electrical & Computer Engineering

,;‘93 UNIVERSITY OF TORONTO

Debugging

- Invariably... things go wrong, e.g.:
- Integration of synthesized HW in system
- Silicon issues: timing, reliability (SEUS)

- Today’s HLS:

N
=/

H-EW -8 iR : ¥

J |
ot e vess[[QaeQR|[[T HmMImI || om e

arbirator(rt)
Fs_add_munrt)

SignalTap Il

SignalTap Il & SignalTap Il
ELA ‘ Hub
ax e —
Expressions - by rstance (Rest_dekalCHIPlpeeproc_NST) _ bwesn |[F[XE] !
§ Transcript x| =3 pre_processor.v = —
[¢ Loading vork.node_two_control | V1147 cre[3] <= (data_in 4 cre(0]) :

¥ Loading vork. £1focell(xcl)
¢ Loading work.bddst (bddst_sxch)
¥ 1

1148 cro(2) <= (cxe[?] A ({erc(0) * data_in))) ;
1242 assign addl3 = (a[13] A ((- (BL12))) A col2)) ;

réy 1244 .o B0) N N) : = - 2 i Download Cable to
6 1286 ... (L)) D N 2 -
5 105 us 1248 ... (LD) N N) 2 . Quartus Il Software
bisiss 1250 ... (BEA) D N D)) 2
;_' 1252w BED)) D N 2
E—"'"“"T\Q""""“ & 1254 oo (BT) D N) 2 | N .’
[Now: 16005 Deka: 0 [simitest_dokalCHiPITFo_Fulinacate B y “ ” ”

& N QUARTUS'II

Debugging Heterogeneous Platforms

- Debugging just the HLS code is a challenge in itself

- Debugging heterogeneous system with HLS-generated
accelerator code, processor, GPU, ...

LD
g
l
g >
g6 :
HW accelerator
g in FPGA fabric
32 o | B|i| @
\ A TIO[T < a
L 8] 0 Q
Qo N 2| © | §
29 o ® 2
S > 3 >
T sl 2|
-
% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
XJ UNIVERSITY OF TORONTO

Visualization

- Today’s HLS: -

)
rosee
™ T
P
2 e

T

for (i = 0; 1 < 4*Nk; i+
W[i] = key[i]:
for (i = Nk; 1 < Nb*(Nr+

{
temp = Wh[i-1]:
if ({i%3Nk) == 0)

temp = SubByte (Re
Wh[i] = Wh[i - NkK]"*t¢
}

“Black box”

(hundreds/tens) thousands
of lines of HDL code

The Edward S. Rogers Sr. Department
% | of Electrical & Computer Engineering

%% UNIVERSITY OF TORONTO

e

Visualization (2)

File View Go Settings Help

X/ scheduler
) (iNoGrouping) [7] || (Fypes T Gatirs | Atcalers | Sauree | Calestian
Called | Function [21]]| [l inet | Distance | called | cCaller
1 scheduler 20 100.00 4 1 [0x000008C0 (Id-2.4.50)
739 588 1l list_remove] 100.00 3 1 | 0x0804D2C0 (olsrd)
895 709 W olsr_spf_del_cand_tree B 100.00 2 1 M (below main) (libc-2.4.50)
205 383 W stremp B 100.00 1 1 g main (olsrd: main.c)

3853 Jl parse_packet
517 568 1] av_insert_after
122 918 || 0x00063DA0
127 132 11| 0x000646C0
366 487 Wl olsr_calc_tc_edge_entry_etx
754 951 1 list_is_empty

nan Aan A EAm e ol e il

"SW-engineer comprehensible”
HW visualization capabilities are needed
that guide HW optimization

] 16,39 0.1E 32 553] poll_sockets
018 018 140 682 Winrangehi
0.32 017 73287 W avl_delete_worker'2
3.56 015 32897 M 0x0007CECO
0.21 014 65376 W olsr_lookup_neighbor_table_alias
013 013 1 645 M olsr_time_out_hna_set
103 013 127 015 M olsr_malloc
0.67 011 32936 1 0x0007C5A0
011 011 816 556 1 0x000156D0
0.10 010 82736 M lookup_link_status
019 0.10 1 645 M olsr_output_lq_tc
0.09 0.09 83 027 1 me_to_double
0.16 0.09 264 W olsr_calculate_lq_mpr
3.08 0.08 181 W olsr_hello_tap
0.08 0.08 9 717 W olsr_check_dup_table_proc
0.90 0.08 11939 W olsr_insert_rt_path
0.69 0.08 45167 W olsr_del_dup_entry

ﬁ 19.63% — 5,7N7.50 %

olsr_spf_add_cand_tree

L__BEERT

[Jiss3% [Cde24%

W 5036 007 33064 M olsr_process_changes B

058 0.07 74076 W olsr_lookup_tc_entry 15

006 006 46003 M olsr_lookup_mprs_set @ [I [EID36 D
&l \ g) CallrMap | | callGraph | Calless | AllCalless | Assembler {ogers Sr. epartment
[callgrind.out. 22504 [1] - Total Instruction Fetch Cost: 1501 733 321 ‘_,ompute r Eng meermg

Commercialization

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

188 88

%% UNIVERSITY OF TORONTO

Our research at University of Toronto developed the award-winning

LegUp FPGA high-level synthesis design tool

Syse gt/

. Q”,* D <
,, '
Andrew Canis, Ph.D Jongsok Choi, Ph.D Ruolong Lian, M.A.Sc Professor Jason Anderson
CEO CTO (of0]0] Chief Scientific Advisor

Altera, Sun Labs, Intel, Qualcomm, Marvell, Altera, Google University of Toronto
Oracle Labs STMicroelectronics 10+ years Xilinx
10 technical publications 15 technical publications 2 technical 80+ publications, 28 patents
publications

(h

Zhi Li, M.Eng

Head of Systems Engineering

Intel,
Waratah Capital Advisors

Joined in March 2018

Omar Ragheb, M.Eng

Software Engineer

KACST, Mobiserve

Joined in Feb. 2018

Mehul Gupta
Software Engineering Intern
University of Waterloo
Joined Jan. 2019

Company Background

- LegUp Computing was founded in 2015
- Spin-off from the University of Toronto

- Offices in Toronto, Canada

- 6 full-time engineers and growing

- Seed funding from Intel in January 2018 (intelg)

Capital
- Revenue:

- 3+ years ongoing contract with FPGA vendor using our HLS/SoC tools

- Licensing revenue from embedded engineers using LegUp for low-latency motor
control applications

www.legupcomputing.com

40

LegUp HLS: Commercial Release

- Latest 6.7 release in Mar. 2019

- Downloadable via website
- 30-day free trial; paid yearly subscription
- Windows & Linux support

LEGUP -

Copyright 2015-2019 LegUp Computing Inc.
All Rights Reserved.

- Key Features
- Multi-threading support

- Best-in-the-class pipelining
- Push-button System-on-Chip generation

- Vendor-agnostic

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

"’?K; UNIVERSITY OF TORONTO

G g

LegUp Graphical IDE: Windows/Linux

workspace - C/C++ - fir/f egUp

IR pPueN23.R P OBQhad B=wdP @B @ S~ Evi®@Ii(FEvivoovra~ [Quick Access
[ProjectExplorer 2 = & ¥ = B | [2 *firc 22‘@ summary.legup.rpt = 8 | % outline X ® Build Targets =g
» G5 Fir * FIR 32bik input, 16 taps. Program stops after injecting 128 inputs.[] BB o % v
#include <stdio.h> = stdio.h
#define INPUTSIZE 128 # INPUTSIZE
#define TAPS 16 # TAPS

#define EXPECTED TOTAL 913046 # EXPECTED_TOTAL

#include "legup/streaming.h" legup/streal

12| | o FIRFilterStreaming(FIFO*, FIFO*) : void

13- void FIRFilterStreaming(FIFO *input fifo, FIFO *output fifo) { o P o
o test_input_injector(FIFO*) : void

15 int in = fifo_read(input_fifo); o test_output_checker(FIFO*) : void

16 P

17 // printf("FIRFilterStreaming input: %d\n", in); el main{Znt

18 static int previous[TAPS] = {0};

19 const int coefficients[TAPS] = {0, 1, 2, 3, 4, 5, 6, 7,

20 8, 9, 10, 11, 12, 13, 14, 15};

21

22 int j, temp;

23 for (j = (TAPS - 1); j >=1; j -= 1) {

24 previous[j] = previous[j - 1]; L

5o « Completely int ted

3 ompiletely integratie

27 previous[@] = in;

28 H

Bomev environment where one can

31 temp += previous[TAPS - j - 1] * coefficients[j]; N .

s d deb file soft

34 int output = (previous[TAPS - 1] == @) 7 0 : temp; eSIgn’ e ug’ pro I e SO Ware’

v}

bW w
5 Yol
-

fifo_write(output_fifo, output); th e n CO m p i | e Softwa re to
E Problems] Tasks & Console %2 [[] Properties h a rdwa re , Si m u Iate h a rdWa re , 8

DT Build Console [fir]

. . .
e B et e and synthesize hardware to
Info: Allocating memories.

Info: Running Scheduling for function: FIRFilterStreaming.

. . .

Info: Done Scheduling.

FPGA, all within a single tool

Info: Generating module declaration.

Info: Generating module signals.

Info: Generating pipeline for function: "FIRFilterStreaming" on line 13 of fir.c.
Pipeline initiation interval = 1.

Info: Running Binding for function: FIRFilterStreaming.

Info: Generating module datapath.

Info: Generating interconnect for top-level module.

Info: Outputing Verilog for top-level module: top.

Info: Generating resource summary.

Info: Verilog output file: fir.v.

Info: LegUp summary report: ./reports/summary.legup.rpt.

17:10:46 Build Finished (took 2s.741ms)

Writable Smartinsert 2:12

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

&

©

CLOUD PLATFORM

- Network processing engines on cloud FPGAs and Intel’s on-premises acceleration cards

Input your

C/C++ Code

Real-Time Data Stream _

amazon

webservices™

Cloud or On-prem
FPGA Server

/

from Network

Real-Time Analysis
Output to Network

Accelerating Memcached on AWS

- Memcached is high-performance, distributed memory

object caching system
- Used by Facebook, Twitter, Reddit, Youtube, etc

Prototype Throughput (Ops/S) vs. AWS

12M ElastiCache
, 11.5M
Support gSefvceS 10M m ElastiCache
SM
6M 4.3M
emcac ed 4M 43K
|1)

QO O O O O
® 0 S S Y
Number of Connections

Balancer Front-end web

Back-end
Database

% The Edward S. Rogers Sr. Department
@' of Electrical & Computer Engineering

~’9§ UNIVERSITY OF TORONTO

Business Models

1. Software licensing model

* Revenue:
* Yearly licensing fee per seat of the HLS software
« Support contract for features and bug fixes
* Customers:
* Engineers using FPGAs who want higher productivity
* FPGA vendors who need a HLS tool to stay competitive
« Software engineers using FPGAs in cloud

2. Applications running on FPGAs

* Cloud FPGA or on-premise FPGA applications
« Database applications like Memcached
* Financial trading and risk analysis algorithms
- Deep learning, image/audio processing, analytics
* Revenue: $/instance/hour on cloud or licensing bitstream for on-premise

% The Edward S. Rogers Sr. Department
. of Electrical & Computer Engineering

' _ UNIVERSITY OF TORONTO

THANK YOU! QUESTIONS?

https://janders.eecg.utoronto.ca/
janders@eecg.toronto.edu

i The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
» ;,; UNIVERSITY OF TORONTO

