
LegUp High-Level Synthesis
and its Commercialization
Jason Anderson
Workshop on Open-Source Design Automation (OSDA)
March 29, 2019
https://janders.eecg.utoronto.ca
http://legupcomputing.com

1

Write Software for a Processor
• Easy (comparatively speaking)
• Flexibility à lower performance

Design Custom Hardware
• High performance, low power
• Need specialized knowledge

Specifying Computations

FPGA-Based Acceleration
• Implementing computations in hardware can
have speed/energy advantages over software:
• Biophotonic simulations: 4X speed-up, 67X more

energy efficient [Cassidy, Betz, FCCM’14]

• Options pricing: 4.6X faster, 25X more energy efficient
[Tse, Thomas, Luk, TVLSI’12]

• Deep learning accelerator on Arria 10: 1.4 TOPS, 1020
img/s for ImageNet inference [Aydonat et al., FPGA’17]

• Microsoft Bing search: 2X speed-up, 29% latency
reduction [Putnam et al., ISCA’14]

3

The Era of FPGA Cloud Computing is Here

Nov’16

Jan’17

Many more

à

Rapidly emerging FPGA-as-a-Service landscape

Alibaba and Tencent deploy
FPGAs in their cloud

Jul ‘17

Sept ‘17

Baidu, Huawei
deploy FPGAs in

their cloudAmazon and Nimbix
deploy FPGAs in their
cloud

June’14

Microsoft accelerates
Bing Search with
FPGAs

Microsoft rolls out FPGAs
in every new datacenter

Oct’16

SKT deploys
FPGAs for AI
acceleration

Aug‘18

5

FPGAs
• Requires specialized knowledge to

design hardware
• Design time: months ~ year

CPUs / GPUs
• Software is relatively easy
• Design time: weeks ~ months
• 10 software engineers for every

hardware engineer

Hardware description
language at

register transfer level

Simulator +
Waveforms

High level
language

C/C++, Open CL
and etc.

Debuggers

• FPGA design is difficult even for hardware engineers
• Software engineers simply cannot use FPGAs

Problem: FPGAs Are Difficult to Use

A Solution

Flexibility/
Ease of Use

High-performance/
Energy-efficiency

6

High-level
Synthesis

HLS Value Proposition
Cu

st
om

iz
ab

ili
ty

D
es
ig
n	
ef
fic
ie
nc
y

Performance

Software

7

HLS Value Proposition
Cu

st
om

iz
ab

ili
ty

D
es
ig
n	
ef
fic
ie
nc
y

Performance

Software

FPGA
Hardware	
design

by HW designer

8

HLS Value Proposition
Cu

st
om

iz
ab

ili
ty

D
es
ig
n	
ef
fic
ie
nc
y

Performance

Software

FPGA
Hardware	
design

FPGA
+

HLS Software	
programmable	

Can be updated
regularly

Can be done by both
SW/HW designers

by HW designer

9

Benefits of HLS
• Time-to-market (lower NRE)
• Easier modifiability/maintainability

• Design spec is in SW
• Important for some appls where spec isn’t firm or changes

frequently, e.g. finance models
• Rapid exploration of HW solution space
• Make FPGA HW accessible to SW engineers

• Bring the energy and speed benefits of HW to those with SW skills

10

The Time is Right for HLS
• HLS papers first appeared in the 80’s

• e.g., Yorktown Silicon Compiler (IBM)
• Many “false starts”

• e.g. Synopsys Behavioral Compiler in 90’s
• So… why should it fly now?

• Hardware size and complexity becoming unmanageable
• Can’t ride wave of processor perf. improvements

• Must deliver better speed/power through other means
• Improvements in compiler technology
• FPGA is the right “IC media” for HLS

LegUp High-Level Synthesis

12

• Programming layer that can target any FPGA

software test &
debug

LegUp

13

Program	code

SW	Profiling	

int	main()	{
….
add();
mult();
sub();
….

}

int	main()	{
….
add();
mult();
sub();
….

}

Processor

FPGA

LegUp Overview

LegUp

LegUp Overview (2)
• Under development since 2009
• 5000+ downloads since first release in 2011

• Open-source license for non-commercial research purposes
• 20+ conference/journal publications, book chapter, multiple

awards; community Award at FPL, BP Award at FPL 2017
• Used LegUp to teach summer courses in HK, Harbin, Europe
• Many grad and undergrad “LegUp alumni”

legup.eecg.toronto.edu

14

LegUp Overview (3)
• Why?

• Few open-source HLS projects
• Addresses key FPGA challenge: too hard to program

• Xilinx/Altera didn’t have HLS
• Inspired by success of other projects:

• VPR/VTR: FPGA architecture, packing, placement, routing
• ABC: logic synthesis

• Do a “big” project with many students

• Had industry and government funding for it…

15

Unique Features and Recent Directions

SoC Generation
• With a single command, LegUp generates a System-on-

Chip with embedded processor & hardware accelerators
1. User designates function(s) for hardware acceleration
2. LegUp performs software/hardware partitioning
3. LegUp compiles hardware partition into hardware accelerator
4. Software partition is compiled for an embedded processor
5. Complete system is generated with memories and interconnect

17

FPGA

System-on-Chip: MIPS Soft Processor

MIPS	Processor HW	Accelerator

INTERCONNECT

HW	Accelerator

On-Chip Cache
Memory

Off-Chip Memory

MemoryLocal	
Memories

Local	
Memories

ALTERA DE2/DE4/DE5 Board

18

FPGA

System-on-Chip: ARM Hard Processor

HW	Accelerator

INTERCONNECT

HW	Accelerator

Off-Chip Memory

Memory
ARM Processor

On-chip	Cache

Local	
Memories

Local	
Memories

ALTERA DE1-SoC/Arria-SoC

Cyclone V-SoC/Arria V-SoC/Arria 10-SoC

19

Parallel Software to Parallel Hardware

20

• With	hardware,	one	can	exploit	spatial	parallelism
• Unfamiliar	to	software	engineers

• LegUp can	synthesize	software parallelism	(Pthreads/OpenMP)	into	
spatial hardware	parallelism

• Each	SW	thread	synthesized	into	a	HW	module

TVLSI’17

ML-Based Area Reduction Advisor

aes

%a.0

%a.1

%b

…

%n.8

program
variables

aes_a0

aes_a1

aes_b

aes_n8

…

reduced
DFG

Predictor

2

41

8

…

13

of
ALMs

reduced

Report:
ranked 

list of var
& area
impact

C program
Modified 

C program

Analytical CNN-based

21

• Finds spatially
localized features

• Finds non-linear
relationships that
are data-driven

• Apply ML for prediction and/or decision making in HLS

DATE’18

Map	a	program’s	DFG	onto	an	input	image	
representation	for	the	CNN

CNN-Based Circuit Area Predictor

22

getelementptr

load

@statemt i32 0 add

xor xor

xor

shl

select

xor and

select

xor

and

i32 1

xor

icmp

xor

icmp

i32 -256

i32 283

Memory Architecture Synthesis

23

The Need for Partitioning

RAM

kernel0

kernel1

arbiter

data recv

data recv

addr data out

What if kernel0 and kernel1 want to access the RAM in the same cycle?

Problem Statement
How can we achieve higher memory bandwidth for simultaneous

accesses?

Yu Ting Chen (U. Toronto) Automatic Memory Partitioning in LegUp July 14, 2017 5 / 33

Automatically partition RAM into sub-RAMs
based on kernel access patterns

FPL’17

Memory Architecture Synthesis (2)
• Profile multi-threaded program behavior
• Partition arrays into sub-arrays (implement in separate RAMs)

to provide threads with exclusive access (to extent possible)

24

Available Configurations

• For each array, partitioning occurs along one of the dimensions

• The available options are: complete, block, cyclic, and block cyclic

Yu Ting Chen (U. Toronto) Automatic Memory Partitioning in LegUp July 14, 2017 11 / 33

Available Configurations

• For each array, partitioning occurs along one of the dimensions

• The available options are: complete, block, cyclic, and block cyclic

Yu Ting Chen (U. Toronto) Automatic Memory Partitioning in LegUp July 14, 2017 11 / 33

Execute program’s memory
trace with hypothetical array

partitioning

Estimate stalls due to arbitration

More
partitionings to

try?

Selected partitioning

Multi-Clock HLS
• Partition circuit into modules operating on separate clock domains
• Why? Raise circuit performance by allowing sub-circuits to operate as

fast as possible
• Automatically insert clock-domain-crossing circuitry
• Proper handing of memories accessed by modules in different

domains

25

FCCM’18

HLS for Dynamic Memory
• HLS tools cannot support synthesis of malloc/free

(new/delete), yet these are used heavily in programs
• Researching approaches to realize in hardware

26

Heap(s) in FPGA RAMs

HW
allocatorkernel0

kernel1

void foo(…) {
…
p = malloc(…)
…
free(q)
…

}

HLS Research Challenges

Quality of the Hardware
• HLS-generated circuits may not be as “good”
as human-expert-designed circuits

• However, HLS-generated circuits are better
(speed+energy efficiency) than SW on a
processor in many/most cases

FFT: Hard to Auto-Synthesize

Syntactic Variance / Constraints

for (i = 0; i < 100; i++) {
if (A[i] & 1)

sum += A[i];
else

sum -= A[i];
}

for (i = 0; i < 100; i++) {
temp1 = sum + A[i];
temp2 = sum – A[i];
sum = (A[i] & 1) ?

temp1 : temp2;
}

• HLS tool QoR highly sensitive to style of
input code + constraints

Possibly cannot loop pipeline Can loop pipeline

Syntactic Variance / Constraints (2)

Matai et al., “Designing a Hardware in the Loop Wireless Digital Channel Emulator for
Software Defined Radio”, FPT 2012.

Fig. 8. Slice numbers for scaling number of paths

Fig. 9. Software versus hardware latency for Baseline, Restructured, Bit
width and PUP optimizations of PathDelays, PathGains and ChannelFunction.
Negative (-X) means slower by X than software(SW). Positive X means faster
by X than software.

tained by PUP optimization are compared to the software
performance. The hardware results are better by 46X, 6X and
42X over the equivalent software version. PathGains gave
the worst speedup. This is largely due to the fact that it
uses CORDIC which requires 79 cycles thus limiting the
initiation interval. The comparison of the baseline software
code with our final hardware implementation has significantly
better results; the hardware implementation of PathDelays

and PathGains is 200,000X and 2000X faster respectively. In
other words, restructuring the code gives significant software
performance benefits.

Table II presents the number of clock cycles, clock period
(frequency) and latency of each sub module. The integrated
emulator runs in 62 ns (16 Mhz). This is 41X times faster
than software emulator. The software emulator uses the same
optimized sub modules.

In the first row of Table III, we present area results for
manually integrated version of emulator. In the second row
of Table III, we present the area results for AutoESL based
integrated version of the emulator. The AutoESL based inte-
gration has 5X larger area than manual integrated one while
being 2X times slower than manually integrated emulator.

We spent a total of five weeks to design the emulator. Of
that, three weeks went towards understanding the application
and writing the restructured code. Two weeks was spent

Fig. 10. Performance of initial and optimized versions of software for
PathDelays and PathGains.

Fig. 11. Block diagram of the emulator.

performing bit-width optimization and PUP with the majority
of this time spent on bit-width optimization.

C. Discussion

Quality of Result: The ultimate way to compare the results
from AutoESL is to compare the final optimized design with
hand coded version. This is a difficult endeavor and one
that we would argue is not totally necessary. HLS tools
are reaching the point where if you code the input design
appropriately, then you will get a design close to if you
designed it from RTL. And the HLS tools allows you to
quickly to change the architecture to see its effects. This is not
to say that HLS tools are a panacea. In fact, we hope this article
relays the fact that HLS tools require a good understanding
of how the hardware and the synthesis process works. At this
point these tools are still far from giving great results on code
that was designed by a software programmer. The user of these
tools needs to understand how the tool will synthesize the final
architecture in order to get the best results.

Previous research [1], [2], [3] designed different models and
use different fading and use different parameters. To our best
knowledge, this is the first work that implements statistical

Raising Abstraction Further / Beyond C
• Learning curve to write HLS-style software+pragmas
• Libraries for specific domains

• Easy-to-use C/C++ libraries with clean API
• Underlying implementation of functions is written in “HLS style”
• Machine learning, compression, computational finance

• Domain-specific languages (DSLs)

Debugging
• Invariably… things go wrong, e.g.:

• Integration of synthesized HW in system
• Silicon issues: timing, reliability (SEUs)

• Today’s HLS:

Debugging Heterogeneous Platforms
• Debugging just the HLS code is a challenge in itself
• Debugging heterogeneous system with HLS-generated

accelerator code, processor, GPU, …

$
5
0
�&
RUWH[�$

��0
3
&
RUH

/��&
DFKH

&
3
8
��

/��&
DFKHV

/��&
DFKHV

&
3
8
��

$
&
3

6
&
8

6
'
5
$
0

&
RQWUROOHU

/�
,QWHUFRQQHFW

)3
*
$
�%
ULGJH

)3
*
$

+
3
6

HW accelerator
in FPGA fabric

Visualization
• Today’s HLS:

HLS

“Black box”

(hundreds/tens) thousands
of lines of HDL code

Visualization (2)

“SW-engineer comprehensible”
HW visualization capabilities are needed

that guide HW optimization

Commercialization

38

FOUNDING TEAM

Andrew Canis, Ph.D

CEO

Ruolong Lian, M.A.Sc

COO

Professor Jason Anderson

Chief Scientific Advisor

Jongsok Choi, Ph.D

CTO

Altera, Sun Labs,
Oracle Labs

10 technical publications

Intel, Qualcomm, Marvell,
STMicroelectronics

15 technical publications

Altera, Google

2 technical
publications

University of Toronto
10+ years Xilinx

80+ publications, 28 patents

Our research at University of Toronto developed the award-winning

LegUp FPGA high-level synthesis design tool

39

ENGINEERING TEAM

Zhi Li, M.Eng

Head of Systems Engineering
Omar Ragheb, M.Eng

Software Engineer
Intel,

Waratah Capital Advisors

Joined in March 2018

KACST, Mobiserve

Joined in Feb. 2018

Mehul Gupta

Software Engineering Intern

University of Waterloo

Joined Jan. 2019

40

Company Background

• LegUp Computing was founded in 2015
• Spin-off from the University of Toronto
• Offices in Toronto, Canada
• 6 full-time engineers and growing
• Seed funding from Intel in January 2018

• Revenue:
• 3+ years ongoing contract with FPGA vendor using our HLS/SoC tools
• Licensing revenue from embedded engineers using LegUp for low-latency motor

control applications

www.legupcomputing.com

40

LegUp HLS: Commercial Release

• Latest 6.7 release in Mar. 2019
• Downloadable via website

• 30-day free trial; paid yearly subscription
• Windows & Linux support

• Key Features
• Multi-threading support

• Best-in-the-class pipelining

• Push-button System-on-Chip generation

• Vendor-agnostic

41

LegUp Graphical IDE: Windows/Linux

42

• Completely integrated
environment where one can
design, debug, profile software,
then compile software to
hardware, simulate hardware,
and synthesize hardware to
FPGA, all within a single tool

43

CLOUD PLATFORM
• Network processing engines on cloud FPGAs and Intel’s on-premises acceleration cards

Accelerating Memcached on AWS
44

• Memcached is high-performance, distributed memory
object caching system
• Used by Facebook, Twitter, Reddit, Youtube, etc

276K 1.4M 1.3M
443K

4.3M

11.5M

0
2M
4M
6M
8M

10M
12M

Number of Connections

ElastiCache

Prototype Throughput (Ops/S) vs. AWS
ElastiCache

Business Models
1. Software licensing model

• Revenue:
• Yearly licensing fee per seat of the HLS software
• Support contract for features and bug fixes

• Customers:
• Engineers using FPGAs who want higher productivity
• FPGA vendors who need a HLS tool to stay competitive
• Software engineers using FPGAs in cloud

2. Applications running on FPGAs
• Cloud FPGA or on-premise FPGA applications

• Database applications like Memcached
• Financial trading and risk analysis algorithms
• Deep learning, image/audio processing, analytics

• Revenue: $/instance/hour on cloud or licensing bitstream for on-premise

45

THANK YOU! QUESTIONS?

https://janders.eecg.utoronto.ca/
janders@eecg.toronto.edu

46

