
www.bitvis.no Your partner for Embedded SW and FPGA

UVVM
- The fastest growing FPGA

verification methodology world-wide!

Workshop on Open Source Design Automation (OSDA) 2019

Please also see related conference paper:

https://osda.gitlab.io/19/tallaksen.pdf

https://osda.gitlab.io/19/tallaksen.pdf

www.bitvis.no

▪ Some slides were skipped during the presentation in order to
keep to the schedule.
These are now included (and marked as such)

▪ The presentation had a lot of animation to ease the
understanding. This is not available in this PDF.
If you would like to have a copy of the animated presentation
(as a powerpoint-show-file), please send a request to
espen.tallaksen@bitvis.no , and I will send it to you.

▪ You may download the complete UVVM from
www.github.com/UVVM

Handout version

UVVM - Setting a standard...2

Added for
handout version

http://www.github.com/UVVM

www.bitvis.no

Why Testbenches and Simulation?

◼ Far more control and observability
✓ Variables and intermediate signals can be viewed.
✓ Environment and testdriver can also be viewed.
✓ Must often coordinate I/O and internal state to verify

corner cases.
✓ Single stepping through code and signals is possible
✓ “Embedded analysers” often sample on clock edges.

Simulators show detailed signal sequences.

◼ Far faster iterations
✓ even more important for time consuming P&R

◼ May have a structured bottom-up verification.

◼ Detect bugs that cannot or most probably will not
be detected in a lab-test
✓ Detect bugs in modules for functionality outside

currently known scope.
✓ Detect bugs that occur in abnormal situations
✓ Detect bugs that are hard to provoke with current HW,

SW or Test system

◼ Most bugs can be found with short simulations.

Cost of

corrections

Design stage

Spec.

Product

/ Field

Ease of

correction &

debugging

Quality

Efficiency

Reuse

UVVM - The fastest growing3

www.bitvis.no

The 2018 Wilson Research Group
Functional Verification Study (1)

Half the project time is spent in verification

UVVM - The fastest growing4

Could we be more efficient? - structured?

www.bitvis.no

The 2018 Wilson Research Group
Functional Verification Study (2)

Half the verification time is spent on debugging

UVVM - The fastest growing5

We can definitely be more efficient! - structured!

www.bitvis.no

Quality and Efficiency enablers

UVVM - The fastest growing6

Structure & ArchitectureStructure &
Architecture

Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

Significantly affects:
- Man hours / Cost
- Schedule & TTM
- Quality & MTTF
- Product LCC
- … Next project

Easily save 100-500 hours
Sometimes 1000-2000 hours

Insufficient simulation will
often cause late problems

www.bitvis.no

▪ The most popular FPGA development language world-wide *1

▪ 60% of all FPGA designer world-wide use VHDL *1

For VHDL designers:
VHDL is by far the best language for verification

 The most efficient

 The least expensive

Why VHDL Verification?

Note 1:
- Numbers taken from Wilson Research 2018 (bi-annual)
- Numbers do actually go more in favour of VHDL (due to surveyee limitations)

UVVM - The fastest growing7

www.bitvis.no

Simple testbench scenario

p_apply_data p_fetch_data

p_main (test-sequencer)

ena_apply_data ena_fetch_data

Input
stimuli

Exp.
Output

Model

DUT

in out

Clock
gen.

BFM BFM

B
F
M

Typically applies to
Data-path oriented
design

Could also apply to
Protocol oriented
design

Control oriented
design typically more
complex to verify

UVVM - The fastest growing8

pif
clk

www.bitvis.no

▪ What is always required for a any good testbench?

• Logging - with good messages

• Alert handling - with good messages

• Checking values and time aspects

• Waiting for something to happen

• Randomisation (in many cases)

▪ Required for both simple and advances testbenches

• Advanced TB architectures need additional advanced structures,
- but these are also building on the basic infrastructure.

Achieving flexibility,
readability, extendibility, ...

?What are you doing over and over again

Why?

Why?

Why?

Why?

Why?

p_apply_data p_fetch_data

p_main (test-sequencer)

ena_apply_data ena_fetch_data

DUT

in out

Clock gen.

UVVM - The fastest growing9

www.bitvis.no

Using the log method

▪ Where? → Anywhere!

-- In test sequencer as a section header

log(ID_LOG_HDR, "Check defaults for all registers");

BV: 60 ns uart_tb Check defaults for all registers

BV:---

-- In test sequencer as a normal progress msg

log("Checking Registers in UART");

BV: 160 ns uart_tb Checking Registers in UART

log(msg) -- Simplest version of all

UVVM - The fastest growing10

Pluss lots of other log variants

www.bitvis.no

check_value()

▪ Checks value against expected (or boolean)

• Triggers an alert if fail – and reports mismatch + message

▪ Overloads for sl, slv, u, s, int, bool, time

▪ With or without a return value (boolean OK)

-- E.g. inside the test sequencer

check_value(dout, x"00", ERROR, “dout must be default inactive");

BV: 60 ns irqc_tb check_value(slv x00)=> OK.

dout must be default inactive

BV:==

BV: ERROR:

BV: 192 ns. irqc_tb

BV: value was: 'xFF'. expected 'x00'.

BV: dout must be default inactive

BV:==

check_value(val, exp, severity, msg, [scope]) -- Simple version

UVVM - The fastest growing11

www.bitvis.no

await_value()

▪ expects (and waits for) a given value on the signal

• inside the given time window

• otherwise timeout - with an alert

• accepts value if already present and min = 0ns

A variant on this is await_change()

await_value(irq, '1', 0 ns, 2* C_CLK_PERIOD,

ERROR, "Interrupt expected immediately");

UVVM - The fastest growing12

www.bitvis.no

▪ All alert levels (severity levels) are counted separately

▪ May set_alert_stop_limit(alert_level, N>=0)

▪ May set_alert_attention(alert_level, IGNORE|REGARD)

▪ May increment_expected_alerts(alert_level, N)

▪ May report_alert_counters(VOID)

Alerts and severities

UVVM - The fastest growing13

▪ Severities

• note, warning, error, failure

• tb_note, tb_warning, tb_error, tb_failure

• manual_check

www.bitvis.no

Report summaries

report_alert_counters(VOID);

===

BV: *** SUMMARY OF ALL ALERTS ***

BV: ==

BV: REGARDED EXPECTED IGNORED Comment?

BV: NOTE : 0 0 0 ok

BV: TB_NOTE : 0 0 0 ok

BV: WARNING : 0 0 0 ok

BV: TB_WARNING : 0 0 0 ok

BV: MANUAL_CHECK : 0 0 0 ok

BV: ERROR : 0 0 0 ok

BV: TB_ERROR : 0 0 0 ok

BV: FAILURE : 0 0 0 ok

BV: TB_FAILURE : 0 0 0 ok

BV: ==

BV: >> No mismatch between counted and expected serious alerts

BV: ==

UVVM - The fastest growing14

www.bitvis.no

▪ check_stable(), await_stable()

▪ clock_generator(), adjustable_clock_generator()

▪ random(), randomize()

▪ gen_pulse()

▪ block_flag(), unblock_flag(), await_unblock_flag()

▪ await_barrier()

▪ enable_log_msg(), disable_log_msg()

▪ to_string(), fill_string(), to_upper(), replace(), etc…

▪ normalize_and_check()

▪ set_log_file_name(), set_alert_file_name()

▪ wait_until_given_time_after_rising_edge()

▪ etc…

More in UVVM Utility Library

UVVM - The fastest growing15

www.bitvis.noUVVM - The fastest growing16

Well Documented

www.bitvis.no

The exhaustive list of what to do:

1. Download from Github
https://github.com/UVVM/UVVM

2. Compile Utility Library
a) Inside your simulator go to ‘uvvm_util/sim’
b) execute: ‘source ../script/compile_src.do’

3. Include the library inside your testbench by adding the
following lines before your testbench entity declaration:

library uvvm_util;
context uvvm_util.uvvm_util_context;

4. You may now enter any utility library command inside your
testbench processes (or subprograms)
e.g. log("Hello world");

How do you get started?

A total of
5 minutes

UVVM - The fastest growing17

https://github.com/UVVM/UVVM

www.bitvis.no

BFMs to handle interfaces

◼ Handle transactions at a higher level

✓ E.g. Read, Write, Send packet, Config, etc

BFM: Bus Functional Model

- A model or model set (or API)
for handling transactions on a physical interface.

- Models the environment - e.g. a bus master

UVVM - The fastest growing18

www.bitvis.no

BFM: Bus Functional Model

- A model or model set (or API)
for handling transactions on a physical interface.

- Models the environment - e.g. a bus master

BFMs to handle interfaces

◼ Handle transactions at a higher level

✓ E.g. Read, Write, Send packet, Config, etc

Example: BFM procedure for a CPU access to a module's register

E.g. write 0xF0 into a register at address 0x22

Replaced by:

write(x”22”, x”F0”);

cs <= ’1’;

we <= ’1’;

addr <= x”22”;

data <= x”F0”;

wait until rising_edge(clk);

wait until falling_edge(clk);

cs <= ’0’;

we <= ’0’;

or:

sbi_write(C_UART_TX, x”F0”);

SBI: Simple Bus Interface
- Single cycle
- Optional ready
- Dead simple

UVVM - The fastest growing19

www.bitvis.no

BFMs to handle interfaces

◼ Handle transactions at a higher level

✓ E.g. Read, Write, Send packet, Config, etc

✓ More understandable for anyone

✓ Simpler code & Improved overview

✓ Uniform style, method, sequence, result

✓ Easy to add several very useful features

UVVM - The fastest growing20

Replaced by:

write(x”22”, x”F0”);

cs <= ’1’;

we <= ’1’;

addr <= x”22”;

data <= x”F0”;

wait until rising_edge(clk);

wait until falling_edge(clk);

cs <= ’0’;

we <= ’0’;

or:

sbi_write(C_UART_TX, x”F0”);

www.bitvis.no

Simple data communication

May use Utility Library

and provided BFMs

DUT (UART)

p_main (test-sequencer)

RX TXBFM BFM

uart_transmit(x"2A")

sbi_check(C_RX, x"2A")

sbi_write(C_TX, x"B3")
uart_expect(x"B3")

TB: 172 ns. uart_tb uart_transmit(x2A) on UART RX

TB: 192 ns. uart_tb sbi_check(x1, ==> x2A) completed. From UART RX

TB: 192 ns. uart_tb sbi_write(x2, ==> xB3) completed. To UART TX

TB: ERROR:

TB: 192 ns. uart_tb

TB: value was: 'xB2'. expected 'xB3'.

TB: (From uart_expect(xB3))

TB:==

Free, Open source BFMs:

UART, AXI4-lite, SPI, I2C,
Avalon MM, AXI4-stream,
GPIO, SBI, ...

SBI

UVVM - The fastest growing21

www.bitvis.no

▪ Utility Library and BFMs are great for simple testbenches

▪ BUT
Additional challenges for more complex verification:

• Cycle related corner cases are almost never tested

• Difficult to get an overview for DUT with multiple interfaces

• Split transactions are cumbersome to control

• Difficult to synchronize stimuli/checks on multiple interfaces

• Several central sequencers often have to be coordinated

• The sequence of events is often difficult to follow

• Debugging is often terrible

• Functional coverage often too low

• Inefficient testbench reuse within a single project

• Inefficient testbench reuse from one project to another

Further testbench challenges

UVVM - The fastest growing22



UVVM



















www.bitvis.no

The SW/HW interface

UVVM - Setting a standard...23

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

Intr
ctrl

CPU AXI4
AXI4-Lite
Avalon
etc..

Standard interface
Standard Protocol

SW
command
sequencer

▪ Inherently a lot of parallel activity and huge complexity

• SW/User cannot possibly control all the details inside each module at all times

• SW/user thus issues pre-defined commands (register setup)

▪ SW and Design Harness (HW) are totally separated

• Enables separate and independent work

• SW is often a magnitude more work than HW
→ Important to allow SW development to be as simple as possible

• Thus often an abstraction layer in between to allow higher level programming

FPGA

Added for
handout version

www.bitvis.no

Added for
handout versionMirror the SW/HW interface

UVVM - Setting a standard...24

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

In
tr
ctr
l

CPU
(SW-seq)

AXI4
AXI4-Lite
Avalon
etc..

Standard interface
Standard Protocol

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

Intr
ctrl

VVC

VVC

VVC

VVC

VVC

VVC

VVC

VVC

Test
seq.

For both systems:

→ Standard module control/status interface

→ Standard protocol from sequencer to modules

→ Standard commands in sequencer

SW/HW Design Environment

FPGA Verification Environment

www.bitvis.no

Verification component

UVVM - Setting a standard...25

Test

Sequencer

SBI_VVC

SBI
VVC Methods

Illustration of a simple check-command from sequencer

Test sequencer may now continue

Interpreter

Command
Queue

Executor

SBI
BFM Methods

BFM

Check is now performed (Alert?)

Results
Container

Result stored for pot. future fetch()

sbi_check()

sbi_check(SBI_VVCT, 1, x”1A4”, x”5B”, ERROR, “First byte”)

sbi_check(x”1A4”, x”5B”, ERROR, “First byte”

sbi_check()

UART
(DUT)

RX
Other

Ports

Clocks

Bus

interface TX

Added for
handout version

www.bitvis.no

Verification of more complex DUT:
- Three main development areas

Clock

Generation

Testcase

Sequencer

SBI_VVC

UART_TX_VVC

UART (DUT)

RX
Other

Ports

Clocks

Bus

interface TX UART_RX_VVC

UVVM - The fastest growing26

▪ 1: The complete Testbench with Test harness (optional hierarchy)

▪ 2: The Verification Components

▪ 3: The Central Test Sequencer

Encapsulated BFM - plus more

TB Test harness

www.bitvis.no

1:The UVVM testbench/harness

UVVM - The fastest growing27

UVVM is LEGO-like
Testbench

Test harness
▪ Build test harness

• Instantiate DUT and VVCs

• Connect VVCs to DUT

▪ Build TB with test sequencer

• Instantiate test harness

• Include VVC methods pkg
Connections included

• No additional connections

• VVCs could be inside DUT

DUT

VVC

VVC

VVC

Test
seq.

→ Standard global interface throughout test harness

→ Standard protocol from test sequencer to VVC

VVC

www.bitvis.no

SBI_VVC

2: VVC: VHDL Verification Component

UVVM - The fastest growing28

Testcase

Sequencer SBI_VVC

UART (DUT)

RX
Other Ports

Clocks

Bus interface

TX

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Same main architecture in every VVC

• >95% same code in Interpreters

• Same command queue

• 95% same code in Executors - apart from BFM calls

VVC Generation

UART BFM to UART_VVC:

less than 30 min

→ Standard VVC internal architecture

www.bitvis.no

*_VVC

2: VVC: VHDL Verification Component

UVVM - The fastest growing29

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

→ Standard Queuing system

→ Standard handling of multithreaded interfaces

→ Standard control of parallel checkers

- Easy to add local sequencers
- Easy to add checkers/monitors/etc

- Easy to handle split transactions

- Easy to handle out of order execution

www.bitvis.no

(Based on very structured TB and VVCs)

▪ The sequencer is the most important part of the Testbench

▪ Most man-hours will be (or should be) spent here

▪ MUST be easy to understand, modify, maintain,

3: The test sequencer

UVVM - The fastest growing30

Clock

Generation

Testcase

Sequencer

SBI_VVC

UART_TX_VVC

UART (DUT)

RX
Other

Ports

Clocks

Bus

interface TX UART_RX_VVCUART_RX_VVC

Baudrate
Checker

www.bitvis.no

Test sequencer issues commands

1. Apply and check data:

Command sequence
- Transactions

UVVM - The fastest growing31

sbi_write(SBI_VVCT,1, C_ADDR_TX_DATA, x"A0", "Send byte UART TX");

uart_expect(UART_VVCT,1,RX x"A0", "Check byte from UART TX");

uart_transmit(UART_VVCT,1,TX x"A1", "Apply byte on UART RX");

wait for C_FRAME_PERIOD;

sbi_check(SBI_VVCT,1, C_ADDR_RX_DATA, x"A1", "Check UART RX byte");

→ Standard command distribution syntax

→ Standard handling of multiple instances

→ Standard transfer of commands from sequencer to VVC

Several additional common commands for:
- Synchronization between VVCs
- Controlling the VVC behaviour and command flow

www.bitvis.no

Test sequencer issues commands

Commands for
synchronization

UVVM - Setting a standard...32

await_value(rx_empty, '0', 0, 12*bit_period, ERROR, message);

→ Standard synchronization between any process or VVC

→ Standard timeout and messaging

insert_delay(SBI_VVCT,1, 2 * C_CLK_PERIOD);

await_completion(UART_VVCT,1,RX, 1 us, "Finish before");

await_unblock_flag(“my_flag“, 100 ns, “waiting for my_flag")

await_barrier(global_barrier, 100 us, “waiting for global barrier")

Included for
handout version

www.bitvis.no

Test sequencer issues commands

Commands for
VVC control

UVVM - Setting a standard...33

flush_command_queue(SBI_VVCT, 1, “Flushing command queue”);

→ Standard set of common commands for all VVCs

→ Standard multicast and broadcast of common commands

fetch_result(SBI_VVCT,1, v_idx, v_data, v_ok, "Fetching data");

terminate_current_command(SBI_VVCT, 1, “Terminating command”);

get_last_received_cmd_idx(SBI_VVCT, 1);

terminate_all_commands (VVC_BROADCAST,”Terminating all commands”);

Included for
handout version

www.bitvis.no

Included for
handout version

UVVM - Setting a standard...34

→ Standard debugging structure

→ Standard debugging control

SBI_VVC
Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

▪ Debugging TB is often more work than debugging the DUT...

▪ May follow the command through from test sequencer to execution

• And automatically print out logs - just by enabling verbosity

2045ns TB seq.(uvvm) ->uart_transmit(UART_VVC,1,TX, x"AA"): . [15]

2045ns UART_VVC,1,TX uart_transmit(UART_VVC,1,TX, x"AA"). Command received [15

2045ns UART_VVC,1,TX uart_transmit(UART_VVC,1,TX, x"AA") Will be executed [15]

3805ns UART_VVC,1,TX uart transmit(x"AA") completed. [15]

Debugging Commands and new VVCs
Included for handout version

www.bitvis.no

▪ ESA (European Space Agency) project on new UVVM extensions

▪ Intention: Improve FPGA quality and verification efficiency

▪ The extensions

• Scoreboarding

• Monitors

• Controlling randomisation and functional coverage

• Error injection

• Local sequencer

• Watchdog

• Controlling property checkers

• Req. vs Verif Matrix (Test coverage)

The ESA extensions

UVVM - The fastest growing35

www.bitvis.no

DUT

Some func.

MP SBI

▪ Model

• Models DUT behaviour

• Receives transaction on DUT input

• Generates expected data

• Passes expected data onto Scoreboard

Advanced verification
- Using Scoreboards, VVCs and Models

UVVM - The fastest growing36

SBI_SB

MP = My Protocol

Seq.

SBI

VVC?
VVC?

SBI_VVCMP_VVC

MP_model

Scoreboard

➔ Autonomous checks
➔ Pass vs Fail
➔ Error++ count
➔ Multiple statistics

uart_transmit(UART_VVCT,1,TX, RANDOM_STIM, 256, "Transmit 256 rand bytes");

uart_transmit(UART_VVCT,1,TX, FULL_COVERAGE_STIM, "Transmit until full cover");

sbi_read(SBI_VVCT,1, C_UART_RX_REG, TO_SB, 256, "Receive 256 B and send to SB");

Compare

Statistics

Expected data
Actual data

Queue

Statistics
SBI

Scoreboard

uart_transmit(UART_VVCT,1,TX, x"42", "Transmit single byte");

sbi_read(SBI_VVCT,1, C_UART_RX_REG, x"42", "Receive byte & send to Scoreboard");

www.bitvis.no

DUT

Some func.

MP SBI

▪ Monitor

• Analyses transaction directly on the DUT interface

• Passes transaction to the Model

Using monitors

UVVM - The fastest growing37

SBI_SB

MP_model
MP = My Protocol

Seq.

SBI

VVC?
VVC?

SBI_VVCMP_VVC

MP_MON,1

www.bitvis.no

Included for
handout version

▪ Lego-like Test harness

▪ Reusable VVCs

▪ Reusable VVC structure

▪ Simple synchronisation

▪ handle any number of interfaces in a structured manner

▪ Clear sequence of event - almost like pseudo code

▪ Test cases are simple to understand

▪ simple debugging of TB and DUT

UVVM: Structure & Overview & Reuse

UVVM - Setting a standard...38

Central

Testcase

Sequencer

VVC SBI

SPI

P3

ETH ETH

P1

P2

UART

DMA

Intr
ctrl

VVC

VVC

VVC

VVC

VVC

VVC

VVC

Non UVVM BFMs and VVCs may easily be wrapped to UVVM

UVVM BFMs and VVCs may be used anywhere - exactly as is

www.bitvis.no

Wouldn't it be nice if we could ...

▪ handle any number of interfaces in a structured manner?

▪ reuse major TB elements between module TBs?

▪ reuse major module TB elements in the FPGA TB?

▪ read the test sequencer almost as simple pseudo code?

▪ recognise the verification spec. in the test sequencer?

▪ understand the sequence of event
- just from looking at the test sequencer

▪ allow simple debugging of TB and DUT

Wishful thinking

UVVM - Setting a standard...39













UVVM



Included for
handout version

www.bitvis.no

▪ Same simple TB architecture independent of designer

▪ Same VVC architecture independent of designer

• And almost independent of Interface

▪ Same commands from one VVC to another

• Same behaviour and response from one VVC to another

• Even simple for SW and HW designers to write and understand

▪ Easy to make new VVCs

• And for others to use it - in all different ways

▪ Established debug-mechanisms and support

• Allows much faster and better debugging

▪ Same synchronization mechanism between any VVC and TB

▪ Easy to reuse major TB parts from one TB to another

▪ Easy to share VVCs between anyone

Benefits of standardisation

UVVM - The fastest growing40

- even more important for Open source..

www.bitvis.no

• UVVM is used by

 10% of all FPGA designers world-wide *1

 (VHDL used by >60% world-wide. 80-90% in Europe)

 ➔ UVVM: Used by approx 20% of all VHDL FPGA designers

• From almost zero 3 years ago…

UVVM – Used world-wide

➔ Fastest growing verification methodology in the world

Recommended by Doulos for Testbench Architecture

*1: According to Wilson Research, October 10, 2018 (Survey executed spring 2018)

ESA project to extend the UVVM functionality

UVVM - The fastest growing41

www.bitvis.no

▪ Huge improvement potential for more structured FPGA verification

➔ UVVM is unlocking this improvement potential

▪ Massive improvement potential for testbench reuse

➔ UVVM is a game changer for efficient reuse

▪ Most testbenches are difficult to understand

➔ UVVM: Easily understandable, maintainable, extensible

▪ There has been no standardisation for VHDL testbenches

➔ UVVM standardises Test harness, VVCs and Commands

➔ UVVM standardisation does not result in any lock-in

Summary

UVVM - The fastest growing42

UVVM is Open Source

UVVM runs on GHDL (open source)

ESA project is extending UVVM Community VVCs soon?

UVVM may save 1000-2000 hours on a complex project

Testbench standardisations allow cooperation and compatibility

www.bitvis.noUVVM - Setting a standard...43

Achieve the key aspects for ANY good testbench:

Overview - Readability - Extensibility - Maintainability - Reuse

▪ Using sub-programs and other important VHDL constructs for verification

▪ Making self-checking testbenches

▪ Using logging and alert handling

▪ Applying value and stability checkers and waiting with a timeout for events

▪ Making your own BFM – and adding features to speed up verification and debugging

▪ Making directed and constrained random tests – knowing where to use what - or a mix

▪ Learning to use OSVVM randomization and functional coverage

▪ Applying OSVVM coverage driven tests in a controlled manner

▪ Using verification components and advanced transactions (TLM) for complex scenarios

▪ Target data and cycle related corner cases and verifying them

▪ Learning to use UVVM to speed up testbench writing and the verification process

Making an easily understandable and modifiable testbench even for really complex verification
– and do this in a way that even SW and HW developers can understand them.

3-day course: Advanced VHDL Verification – Made simple

More info under https://bitvis.no/course-calendar/

Included for
handout version

https://bitvis.no/course-calendar/

